CLASS XI

Sets and their Representations:

- A set is a well-defined collection of objects.
- Objects, elements and members of a set are synonymous terms.
- Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
- The elements of a set are represented by small letters a, b, c, x, y, z, etc.
- If 'a' is an element of a set A, we say that " a belongs to A" the Greek symbol ∈ (epsilon) is used to denote the phrase 'belongs to'. Thus, we write a ∈ A. If 'b' is not an element of a set A, we write b ∉ A and read "b does not belong to A". Thus, in the set V of vowels in the English alphabet, a ∈ V but b ∉ V. In the set P of prime factors of 30, 3 ∈ P but 15 ∉ P.
- Methods Of Representing A Set :
- Roster (or tabular form or list form)
- Set-builder form (or rule form).
 - In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces { }. For example, the set of all even positive integers less than 7 is described in roster form as {2, 4, 6}.
 - In set-builder form, all the elements of a set possess a single common property which is not possessed by any element outside the set. For example, in the set {a, e, i, o, u}, all the elements possess a common property, namely, each of them is a vowel in the English alphabet, and no other letter possess this property. Denoting this set by V, we write
 - $V = {x : x is a vowel in English alphabet}$

> <u>TYPES OF SETS</u>

- The Empty set : A set which does not contain any element is called the empty set or the null set or the void set. The empty set is denoted by the symbol φ or { }. A few examples of empty sets are given below.
 - Let $A = \{x : 1 < x < 2, x \text{ is a natural number}\}$. Then A is the empty set, because there is no natural number between 1 and 2.
 - $B = \{x : x^2 2 = 0 \text{ and } x \text{ is rational number}\}$. Then B is the empty set because the equation $x^2 2 = 0$ is not satisfied by any rational value of x.
 - $C = \{x : x \text{ is an even prime number greater than } 2\}$. Then C is the empty set, because 2 is the only even prime number.
 - $D = \{x : x^2 = 4, x \text{ is odd }\}$. Then D is the empty set, because the equation $x^2 = 4$ is not satisfied by any odd value of x.
- Finite and Infinite Sets : A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.

Consider some examples :

- Let W be the set of the days of the week. Then W is finite.
- Let S be the set of solutions of the equation $x^2 16 = 0$. Then S is finite.
- Let G be the set of points on a line. Then G is infinite.

When we represent a set in the roster form, we write all the elements of the set within braces $\{\}$. It is not possible to write all the elements of an infinite set within braces $\{\}$ because the numbers of elements of such a set is not finite. So, we represent some infinite set in the roster form by writing a few elements which clearly indicate the structure of the set followed (or preceded) by three dots. For example, $\{1, 2, 3 ...\}$ is the set of natural numbers, $\{1, 3, 5, 7, ...\}$ is the set of odd natural numbers, $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is the set of integers. All these sets are infinite.

- Equal sets : Two sets A and B are said to be equal if they have exactly the same elements and we write A = B. Otherwise, the sets are said to be unequal and we write $A \neq B$.
 - Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 1, 4, 2\}$. Then A = B.
 - If $A = \{1, 2, 3, 4\}$ and $B = \{1, 1, 2, 2, 2, 3, 4, 4, 4\}$. Then also A = B.
 - Let A be the set of prime numbers less than 6 and P the set of prime factors of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of 30 and also these are less than 6.

- Singleton set : A set, consisting of a single element is called a singleton set. The sets {0}, {5}, {-7} are singleton sets. {x : x + 6 = 0, x ∈ Z} is a singleton set, because this set contains only integer namely, -6.
- **Disjoint Sets:** Two sets are said to be disjoint iff' they have no common element.
- SUBSETS: A set A is said to be a subset of a set B if every element of A is also an element of B. In other words, A ⊂ B if whenever x ∈ A, then x ∈ B. It is often convenient to use the symbol "⇒" which means implies. Using this symbol, we can write the definition of subset as follows:

 $A \subset B$ if $x \in A \Rightarrow x \in B$. We read the above statement as "A is a subset of B if x is an element of A implies that x is also an element of B". If A is not a subset of B, we write $A \not\subset B$. For example :

- The set Q of rational numbers is a subset of the set R of real numbers, and we write $Q \subset R$.
- If A is the set of all divisors of 56 and B the set of all prime divisors of 56, then B is a subset of A and we write B ⊂ A.
- Let $A = \{1, 3, 5\}$ and $B = \{x : x \text{ is an odd natural number less than } 6\}$. Then $A \subset B$ and $B \subset A$ and hence A = B.
- Let A = { a, e, i, o, u} and B = { a, b, c, d}. Then A is not a subset of B, also B is not a subset of A.
- ▶ **Proper subset :** If $A \subset B$ and $A \neq B$, then A is called a proper subset of B, written as $A \subset B$.
 - For example : Let $A = \{x : x \text{ is an even natural number}\}$ and $B = \{x : x \text{ is a natural number}\}$. Then, $A = \{2, 4, 6, 8, \dots\}$ and $B = \{1, 2, 3, 4, 5, \dots\} \Rightarrow A \subseteq B$.

> Theorems on subsets :

- **Theorem 1 :** Every set is a subset of itself.
 - Proof : Let A be any set. Then, each element of A is clearly in A. Hence $A \subseteq A$.
- **Theorem 2**: The empty set is a subset of every set. Proof : Let A be any set and φ be the empty set. In order to show that $\varphi \subseteq A$, we must show that every element of φ is an element of A also. But, φ contains no element, So, every element of φ is
- cvery element of φ is an element of *A* also. But, φ contains no element, so, every element of φ in A. Hence φ ⊂ A.
 Theorem 3 : The total number of subsets of a finite set containing n elements is 2ⁿ.

Proof : Let A be a set of n elements.

The null set is a subset of A containing no element.

: Number of subsets of A containing no element = $1 = {}^{n}C_{0}$.

Number of subsets of A containing 1 element = Number of groups of n elements taking 1 at a time = ${}^{n}C_{1}$.

Number of subsets of A containing 2 elements = Number of groups of n elements taking 2 at a time = ${}^{n}C_{2}$.

...

Number of subsets of A containing n elements i.e. $A = 1 = {}^{n}Cn$

Total number of subsets of $A = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}Cn = 2^{n}$ [Using binomial theorem] Some properties of subsets :

• If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Let $x \in A \Rightarrow x \in B$ ($A \subseteq B$) and $x \in B \Rightarrow x \in C$ ($B \subseteq C$) $\Rightarrow A \subseteq C$

If A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Let $A \subseteq B$ and $B \subseteq A \therefore x \in A \Rightarrow x \in B$ ($A \subseteq B$) and $x \in B \Rightarrow x \in A$ ($B \subseteq A$)

$$\therefore A = B$$

Conversely, Let $A \subseteq B$

 $\therefore x \in A \Rightarrow x \in B (A = B) \therefore A \subseteq B$

- Similarly, $x \in B \Rightarrow x \in A (A = B)$
- $\therefore B \subseteq A$
- ➤ Intervals as subsets of R : Let a, b ∈ R and a < b. Then the set of real numbers { y : a < y < b} is called an open interval and is denoted by (a, b). All the points between a and b belong to the open interval (a, b) but a, b themselves do not belong to this interval. The interval which contains the end points also is called closed interval and is denoted by [a, b]. Thus</p>
 - $[a, b] = \{x : a \le x \le b\}$ We can also have intervals closed at one end and open at the other, i.e.,
 - \circ [a, b) = {x : a $\leq x < b$ } is an open interval from a to b, including a but excluding b.
 - $(a, b] = \{x : a < x \le b\}$ is an open interval from a to b including b but excluding a.

 \circ (a, b) = { x : a < x < b } is an open interval from a to b excluding both a and b.

- **POWER SET** : The collection of all subsets of a set A is called the power set of A. It is denoted by P(A). In P(A), every element is a set. If a set A has n elements then its power set has 2^{n} elements. If n(A) = x then $n(P(A)) = 2^x$ and $n[P(P(A))] = 2^{2^x}$
- > UNIVERSAL SET : If there are some sets under consideration, then there happens to be a set which is a superset of each one of the given sets. Such a set is known as the universal set, denoted by U.

\triangleright **OPERATIONS ON SETS**

Union Of Sets : The union of two sets A and B is the set of all those elements which are either in A or in B or in both. It is represented as $A \cup B$. $A \cup B = \{x : x \in A \text{ or } x \in B \}$

• Eg. If A = $\{2, 3, 6, 7\}$ and B = $\{3, 4\}$ then A \cup B = $\{2, 3, 4, 6, 7\}$

- Intersection Of Sets : The intersection of two sets A and B is the set of all elements which are common. $A \cap B = \{x : x \in A \text{ and } x \in B \}$ It is represented as $A \cap B$.
 - **Eg**. If $A = \{2, 3, 6, 7\}$ and $B = \{3, 4\}$ then $A \cap B = \{3\}$
 - Note : if two sets are disjoint then $A \cap B = \{\}$ or φ
 - Difference Of Sets : The difference of two sets A and B in this order is the set of elements which belong to A but not to B. $A - B = \{x : x \in A \text{ but } x \notin B \}$
 - Eg. If A = $\{2, 3, 6, 7\}$ and B = $\{3, 4, 6\}$ then A B = $\{2, 7\}$ and B A = $\{4\}$
- Complement Of a Set : The complement of a subset A of universal set U is the set of all elements of U which are not the elements of A. It is represented as A^{C} or A'. $A' = \{x: x \in U \text{ but } x \notin A \}$
 - Eg. If U = {1, 2, 3, ..., 9} and A = {2, 4, 6} then A^{C} (or A') = {1, 3, 5, 7, 8, 9}

Properties of Union Of Sets

	0	$A \cup B = B \cup A$	(Commutative law)
	0	$(A \cup B) \cup C = A \cup (B \cup C)$	(Associative law)
	0	$A \cup \phi = A$	(Law of identity element)
	0	$A \cup A = A$	(Idempotent law)
	0	$U \cup A = U$	(Law of U)
	0	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	(Distributive law)
Properties of Intersection Of Sets			
	0	$A \cap B = B \cap A$	(Commutative law)
	0	$(A \cap B) \cap C = A \cap (B \cap C)$	(Associative law)
	0	$A \cap \varphi = \varphi$	(Law of φ)
	0	$\mathbf{U} \cap \mathbf{A} = \mathbf{A}$	(Law of U)
	0	$A \cap A = A$	(Idempotent law)
	0	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(Distributive law)
Properties of Complement Sets			
	0	$A \cup A' = U$	(Complement law)
	0	$A \cap A' = \varphi$	(Complement law)
	0	$(\mathbf{A} \cup B)' = A' \cap B'$	(De Morgan's law)
		$(A \cap D)' = A' \cup D'$	(Da Manzan'a law)

- $A \cap B$) (A')' = A

(De Morgan's law) (Law of double complementation)

- $U' = \phi$
- $\phi' = U$

Practical Applications

- If A and B are finite sets such that $A \cap B = \phi$, then $n(A \cup B) = n(A) + n(B)$.
- If $A \cap B \neq \phi$, then $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(A \cap C) + n(A \cap B \cap C)$
- Venn Diagrams: (will discuss in the class)