> Sets and their Representations:

- A set is a well-defined collection of objects.
- Objects, elements and members of a set are synonymous terms.
- Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
- The elements of a set are represented by small letters a, b, c, x, y, z, etc.
- If 'a' is an element of a set A, we say that " a belongs to A" the Greek symbol \in (epsilon) is used to denote the phrase 'belongs to'. Thus, we write $a \in A$. If ' b ' is not an element of a set A, we write $b \notin A$ and read "b does not belong to A". Thus, in the set V of vowels in the English alphabet, $\mathrm{a} \in \mathrm{V}$ but $\mathrm{b} \notin$ V . In the set P of prime factors of $30,3 \in \mathrm{P}$ but $15 \notin \mathrm{P}$.
$>$ Methods Of Representing A Set :
- Roster (or tabular form or list form)
- Set-builder form (or rule form).
- In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces $\}$. For example, the set of all even positive integers less than 7 is described in roster form as $\{2,4,6\}$.
- In set-builder form, all the elements of a set possess a single common property which is not possessed by any element outside the set. For example, in the set $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$, all the elements possess a common property, namely, each of them is a vowel in the English alphabet, and no other letter possess this property. Denoting this set by V, we write $\mathrm{V}=\{\mathrm{x}: \mathrm{x}$ is a vowel in English alphabet $\}$

$>$ TYPES OF SETS

- The Empty set : A set which does not contain any element is called the empty set or the null set or the void set. The empty set is denoted by the symbol ϕ or $\}$. A few examples of empty sets are given below.
- Let $\mathrm{A}=\{\mathrm{x}: 1<\mathrm{x}<2$, x is a natural number $\}$. Then A is the empty set, because there is no natural number between 1 and2.
- $B=\left\{x: x^{2}-2=0\right.$ and x is rational number $\}$. Then B is the empty set because the equation $x^{2}-2=0$ is not satisfied by any rational value of x.
- $\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is an even prime number greater than 2$\}$. Then C is the empty set, because 2 is the only even prime number.
- $\mathrm{D}=\left\{\mathrm{x}: \mathrm{x}^{2}=4, \mathrm{x}\right.$ is odd $\}$. Then D is the empty set, because the equation $\mathrm{x}^{2}=4$ is not satisfied by any odd value of x.
- Finite and Infinite Sets : A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.
Consider some examples :
- Let W be the set of the days of the week. Then W is finite.
- Let S be the set of solutions of the equation $x^{2}-16=0$. Then S is finite.
- Let G be the set of points on a line. Then G is infinite.

When we represent a set in the roster form, we write all the elements of the set within braces \{ \}. It is not possible to write all the elements of an infinite set within braces \{ \} because the numbers of elements of such a set is not finite. So, we represent some infinite set in the roster form by writing a few elements which clearly indicate the structure of the set followed (or preceded) by three dots. For example, $\{1,2,3 \ldots\}$ is the set of natural numbers, $\{1,3,5,7, \ldots\}$ is the set of odd natural numbers, $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ is the set of integers. All these sets are infinite.

- Equal sets : Two sets A and B are said to be equal if they have exactly the same elements and we write $\mathrm{A}=\mathrm{B}$. Otherwise, the sets are said to be unequal and we write $\mathrm{A} \neq \mathrm{B}$.
- Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{3,1,4,2\}$. Then $\mathrm{A}=\mathrm{B}$.
- If $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,1,2,2,2,3,4,4,4\}$. Then also $\mathrm{A}=\mathrm{B}$.
- Let A be the set of prime numbers less than 6 and P the set of prime factors of 30 . Then A and P are equal, since 2,3 and 5 are the only prime factors of 30 and also these are less than 6 .
- Singleton set : A set, consisting of a single element is called a singleton set. The sets $\{0\},\{5\},\{-7\}$ are singleton sets. $\{x: x+6=0, x \in Z\}$ is a singleton set, because this set contains only integer namely, -6 .
- Disjoint Sets: Two sets are said to be disjoint iff' they have no common element.
$>$ SUBSETS: A set A is said to be a subset of a set B if every element of A is also an element of B. In other words, $A \subset B$ if whenever $x \in A$, then $x \in B$. It is often convenient to use the symbol " \Rightarrow " which means implies. Using this symbol, we can write the definition of subset as follows:
$A \subset B$ if $x \in A \Rightarrow x \in B$. We read the above statement as " A is a subset of B if x is an element of A implies that x is also an element of $B "$. If A is not a subset of B, we write $A \not \subset B$. For example :
- The set Q of rational numbers is a subset of the set R of real numbers, and we write $Q \subset R$.
- If A is the set of all divisors of 56 and B the set of all prime divisors of 56 , then B is a subset of A and we write $\mathrm{B} \subset \mathrm{A}$.
\circ Let $\mathrm{A}=\{1,3,5\}$ and $\mathrm{B}=\{\mathrm{x}: \mathrm{x}$ is an odd natural number less than 6$\}$. Then $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$ and hence $\mathrm{A}=\mathrm{B}$.
- Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\}$. Then A is not a subset of B, also B is not a subset of A.
$>$ Proper subset : If $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{A} \neq \mathrm{B}$, then A is called a proper subset of B , written as $\mathrm{A} \subset \mathrm{B}$.
- For example : Let $A=\{x: x$ is an even natural number $\}$ and $B=\{x: x$ is a natural number $\}$. Then, $\mathrm{A}=\{2,4,6,8, \ldots \ldots \ldots$.$\} and \mathrm{B}=\{1,2,3,4,5, \ldots ..\} \Rightarrow \mathrm{A} \subset \mathrm{B}$.

$>$ Theorems on subsets :

- Theorem 1 : Every set is a subset of itself.

Proof : Let A be any set. Then, each element of A is clearly in A. Hence A \subseteq A.

- Theorem 2 : The empty set is a subset of every set.

Proof : Let A be any set and φ be the empty set. In order to show that $\varphi \subseteq A$, we must show that every element of φ is an element of A also. But, φ contains no element, So, every element of φ is in A. Hence $\varphi \subset A$.

- Theorem 3: The total number of subsets of a finite set containing n elements is 2^{n}. Proof : Let A be a set of n elements.
The null set is a subset of A containing no element.
\therefore Number of subsets of A containing no element $=1={ }^{n} C_{0}$.
Number of subsets of A containing 1 element $=$ Number of groups of n elements taking 1 at a time $={ }^{n} \mathrm{C}_{1}$.
Number of subsets of A containing 2 elements $=$ Number of groups of n elements taking 2 at a time $={ }^{\mathrm{n}} \mathrm{C}_{2}$.
...
Number of subsets of A containing n elements i.e. $\mathrm{A}=1={ }^{\mathrm{n}} \mathrm{Cn}$
Total number of subsets of $\mathrm{A}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots \ldots . . .+{ }^{\mathrm{n}} \mathrm{Cn}=2^{\mathrm{n}}$ [Using binomial theorem]
> Some properties of subsets :
- If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$, then $\mathrm{A} \subseteq \mathrm{C}$.

Let $x \in A \Rightarrow x \in B(A \subseteq B)$ and $x \in B \Rightarrow x \in C(B \subseteq C) \Rightarrow A \subseteq C$

- If $\mathrm{A}=\mathrm{B}$ if and only if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$.

Let $A \subseteq B$ and $B \subseteq A \therefore x \in A \Rightarrow x \in B(A \subseteq B)$ and $x \in B \Rightarrow x \in A(B \subseteq A)$
$\therefore \mathrm{A}=\mathrm{B}$
Conversely, Let $\mathrm{A} \subseteq \mathrm{B}$
$\therefore \mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{x} \in \mathrm{B}(\mathrm{A}=\mathrm{B}) \quad \therefore \mathrm{A} \subseteq \mathrm{B}$
Similarly, $x \in B \Rightarrow x \in A(A=B)$
$\therefore \mathrm{B} \subseteq \mathrm{A}$
> Intervals as subsets of \mathbf{R} : Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{a}<\mathrm{b}$. Then the set of real numbers $\{\mathrm{y}: \mathrm{a}<\mathrm{y}<\mathrm{b}\}$ is called an open interval and is denoted by (a, b). All the points between a and b belong to the open interval (a, b) but a, b themselves do not belong to this interval. The interval which contains the end points also is called closed interval and is denoted by [a, b]. Thus

- $[\mathrm{a}, \mathrm{b}]=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$ We can also have intervals closed at one end and open at the other, i.e.,
$\circ[\mathrm{a}, \mathrm{b})=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$ is an open interval from a to b , including a but excluding b .
$\circ(\mathrm{a}, \mathrm{b}]=\{\mathrm{x}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$ is an open interval from a to b including b but excluding a .
$\circ(\mathrm{a}, \mathrm{b})=\{\mathrm{x}: \mathrm{a}<\mathrm{x}<\mathrm{b}\}$ is an open interval from a to b excluding both a and b .
> POWER SET : The collection of all subsets of a set A is called the power set of A . It is denoted by $P(A)$. In $P(A)$, every element is a set. If a set A has n elements then its power set has 2^{n} elements. If $n(A)=x$ then $n(P(A))=2^{x}$ and $n[P(P(A))]=2^{2^{x}}$
$>$ UNIVERSAL SET : If there are some sets under consideration, then there happens to be a set which is a superset of each one of the given sets. Such a set is known as the universal set, denoted by U.

> OPERATIONS ON SETS

- Union Of Sets: The union of two sets A and B is the set of all those elements which are either in A or in B or in both. It is represented as $A \cup B . A \cup B=\{x: x \in A$ or $x \in B\}$
- Eg. If $A=\{2,3,6,7\}$ and $B=\{3,4\}$ then $A \cup B=\{2,3,4,6,7\}$
- Intersection Of Sets: The intersection of two sets A and B is the set of all elements which are common. It is represented as $A \cap B . \quad A \cap B=\{x: x \in A$ and $x \in B\}$
- Eg. If $\mathrm{A}=\{2,3,6,7\}$ and $\mathrm{B}=\{3,4\}$ then $\mathrm{A} \cap \mathrm{B}=\{3\}$
- Note: if two sets are disjoint then $\mathrm{A} \cap \mathrm{B}=\{ \}$ or φ
- Difference Of Sets : The difference of two sets A and B in this order is the set of elements which belong to A but not to B . $\mathrm{A}-\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}$ but $\mathrm{x} \notin \mathrm{B}\}$ - Eg. If $A=\{2,3,6,7\}$ and $B=\{3,4,6\}$ then $A-B=\{2,7\}$ and $B-A=\{4\}$
- Complement Of a Set : The complement of a subset A of universal set U is the set of all elements of U which are not the elements of A . It is represented as A^{C} or $A^{\prime} . \quad A^{\prime}=\{\mathrm{x}: \mathrm{x} \in \mathrm{U}$ but $\mathrm{x} \notin \mathrm{A}\}$
- Eg. If $U=\{1,2,3, \ldots, 9\}$ and $A=\{2,4,6\}$ then $A^{C}\left(\right.$ or $\left.A^{\prime}\right)=\{1,3,5,7,8,9\}$
- Properties of Union Of Sets

\circ	$A \cup B=B \cup A$	(Commutative law)
\circ	$(A \cup B) \cup C=A \cup(B \cup C)$	(Associative law)
\circ	$A \cup \varphi=A$	(Law of identity element)
\circ	$A \cup A=A$	(Idempotent law)
\circ	$U \cup A=U$	(Law of $U)$
\circ	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	(Distributive law)

- Properties of Intersection Of Sets
- $A \cap B=B \cap A$
- $(A \cap B) \cap C=A \cap(B \cap C)$
- $A \cap \varphi=\varphi$
- $U \cap A=A$
- $A \cap A=A$
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad$ (Distributive law)
(Commutative law)
(Associative law)
(Law of φ)
(Law of U)
(Idempotent law)
- Properties of Complement Sets
- $\mathrm{A} \cup A^{\prime}=\mathrm{U}$
- $A \cap A^{\prime}=\varphi$
- $(\mathrm{A} \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $(\mathrm{A} \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
- $\left(A^{\prime}\right)^{\prime}=\mathrm{A}$
- $U^{\prime}=\varphi$
- $\phi^{\prime}=\mathrm{U}$
(Complement law)
(Complement law)
(De Morgan's law)
(De Morgan's law)
(Law of double complementation)
- Practical Applications
- If A and B are finite sets such that $A \cap B=\varphi$, then $n(A \cup B)=n(A)+n(B)$.
- If $A \cap B \neq \varphi$, then $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
- $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$
- Venn Diagrams: (will discuss in the class)

