1. Find the slope of a line which makes the following angle with x - axis.
i) 30^{0}
ii) 150^{0}
iii) 240°
iv) 315^{0}
2. Find the slope of each of the lines passing through the points.
i) $\mathrm{A}(3,2), \mathrm{B}(-1,6)$
ii) $\mathrm{P}(0,2), \mathrm{Q}(1,5)$
iii) $R\left(a^{2}, b\right), S\left(b^{2}, a\right)$
3. Slope of a line joining the points $(7,3)$ and $(k, 2)$ is -4 . Find the value of k.
4. Determine whether the line joining the following points are parallel, perpendicular or neither:
i) $(3,7),(1,4)$ and $(-2,4),(0,3)$
ii) $(1,4),(3,6)$ and $(-1,5),(2,8)$
5. Show that the line joining $(-2,6)$ and $(4,8)$ is perpendicular to the line joining $(8,12)$ and $(4,24)$.
6. Without using Pythagoras theorem, show that the points $(1,2),(4,5)$ and $(6,3)$ represent the vertices of a right triangle.
7. Find the value of p such that the line passing through the points $(-4, p)$ and $(1,3)$ is
i) parallel
ii) perpendicular
to the line passing through the points $(-2,5)$ and $(8,7)$.
8. Using slopes, find the value of x for which the point $(x,-1),(2,1)$ and $(4,5)$ are collinear.
9. Show that the points $\left(a t_{1}{ }^{2}, 2 a t_{1}\right),\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$ and $(a, 0)$ are collinear if $t_{1} t_{2}=-1$
10. Show that the points $(-2,-1),(1,0)(4,3)$, and $(1,2)$ are the vertices of a parallelogram.
11. A line passes through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and (h, k). If the slope of the line is m , show that $\mathrm{k}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{h}-\mathrm{x}_{1}\right)$
12. If three points $(\mathrm{h}, 0),(\mathrm{a}, \mathrm{b})$ and $(0, \mathrm{k})$ lie on a line, Show that $\frac{a}{h}+\frac{b}{k}=1$.
13. Find the slope of the line, which makes an angle 30° with the positive direction of y - axis measured anticlockwise.
14. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.
15. Find the angle between the X - axis and the line joining the points $(3,-1)$ and $(4,-2)$.
16. Find the equation of the line parallel to $x-$ axis at a distance of
i) 3 units above x-axis.
ii) 4 units below x-axis.
17. Find the equation of a line passing through $(2,-3)$ and inclined at an angle of 135° with the positive direction of x - axis.
18. Determine the equation of line through the point $(-4,-3)$ and parallel to $x-$ axis.
19. Find the equation of the line joining the points i) $(-1,3)$ and $(4,-2)$
ii) $\left(\mathrm{at}_{1}{ }^{2}, 2 a \mathrm{a}_{1}\right)$ and $\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$.
20. Find the equation of the perpendicular bisector of the line segment joining the points $\mathrm{A}(2,3)$ and $\mathrm{B}(6,-5)$.
21. Find the equations of the medians of the triangle ABC whose vertices are $\mathrm{A}(2,5), \mathrm{B}(-4,9)$ and $\mathrm{C}(-2,-1)$
22. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and ($-3,6$)
23. Find the equation of the line i) passing through $(3,4)$ and sum of its intercepts on the axes is 14.
ii) passing through $(2,2)$ and sum of its intercepts on the axes is 9 .
24. Find the equation of the line through the point $(0,2)$ making an angle $\frac{2 \pi}{3}$ with the positive x - axis. Also find the equation of line parallel to it and crossing the y - axis at a distance of 2 units below the origin.
25. In what ratio is the line joining the points $(2,3)$ and $(4,-5)$ divide by the line passing through the points $(6,8)$ and $(-3,-2)$
26. Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x - axis is 30°. Find the equation of the line.
27. Perpendicular distance from the origin is 7 units and the line makes an angle of 150° with the positive direction of y-axis. Find the equation of the line.
28. Using distance formula show that the points $(-3,-5),(1,-6)$ and $(-7,-4)$ are collinear.
29. Using slope formula show that the points $(3,5),(1,1)$ and $(-2,-5)$ are collinear.
30. Find the co - ordinates of the point which divides the join of $(5,-4)$ and $(-3,2)$ internally in the ratio $1: 2$.
31. Find the co-ordinates of the point, which divides the join of $(2,-6)$ and $(4,3)$ externally in the ratio $3: 2$.
32. Prove that the points $(-2,2),(8,-2)$ and $(-4,-3)$ are the vertices of a right angled triangle.
33. Show that the points $(a, a),(-a,-a)$ and $(-\sqrt{ } 3 a, \sqrt{3} a)$ are the vertices of an equilateral triangle.
34. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a square.
35. Find the distance between points $\mathrm{A}(\cos \theta, \sin \theta)$ and $\mathrm{B}(\sin \theta, \cos \theta)$.
36. Find x , if the slope of the line joining $(-8,11)$ and $(2, x)$ is $-4 / 3$.
37. The line joining $(-5,7)$ and $(0,-2)$ is perpendicular to the line joining $(1,3)$ and $(4, x)$. Find x.
