1. Show that the locus of the mid-point of the distance between the axes of the variable line $x \cos \theta+y \sin \theta=p$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$ where p is a constant.
2. If the line joining two points $\mathrm{A}(2,0)$ and $\mathrm{B}(3,1)$ is rotated about A in anti-clock wise direction through an angle of 15°. Find the equation of the line in new position.

Ans: $\sqrt{3} \mathrm{x}-\mathrm{y}-2 \sqrt{3}=0$
3. If the slope of a line passing through the point $\mathrm{A}(3,2)$ is $3 / 4$, then find points on the line which are 5 units away from the point A .
ans : $(-1,-1) ;(7,5)$
4. If one diagonal of a square is along the line $8 x-15 y=0$ and one of its vertex is at $(1,2)$, then find the equation of sides of the square passing through this vertex. Ans $23 x-7 y-9=0,7 x+23 y-53=0$
5. The two lines $a_{1} x+b_{1} y=c_{1}$ and $a x+b y=c$, are perpendicular iff'.
6. Find the reflection of the point $(4,-13)$ about the line $5 x+y+6=0$
ans: ($-1,-14$)
7. A point moves such that its distance from the point $(4,0)$ is half that of its distance from the line $x=16$. Find the locus of the point. Ans: $3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=192$
8. Find the points on the line $x+y=4$ which lie at a unit distance from the line $4 x+3 y=10$.Ans: $(3,1),(-7,11)$
9. Show that the tangent of an angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{a}-\frac{y}{b}=1$ is $\frac{2 a b}{a^{2}-b^{2}}$.
10. Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis. Ans: $\sqrt{3} x+y=8$
11. Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by $3 x+4 y=4$ and the opposite vertex of the hypotenuse is $(2,2)$.

Ans: $x-7 y-12=0$
12. If the equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$, then find the length of the side of the triangle.
[Hint: Find length of perpendicular (p) from $(2,-1)$ to the line and use $\mathrm{p}=l \sin 60^{\circ}$, where l is the length of
side of the triangle].
Ans: $\sqrt{\frac{2}{3}}$
13. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinates of the point P . [Hint: Let the slope of the line be m. Then the equation of the line passing through the fixed point $\mathrm{P}(x 1, y 1)$ is $y-y 1=m(x-x 1)$. Taking the algebraic sum of perpendicular distances equal to zero, we get $y-1=m(x-1)$. Thus $(x 1, y 1)$ is $(1,1)$.]
14. In what direction should a line be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ is at a distance $\frac{\sqrt{6}}{3}$ from the given point.

$$
\text { Ans: } 15^{\circ} \text { or } 75^{\circ}
$$

15. A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point. [Hint: $\frac{x}{a}+\frac{y}{b}=1$ where $\frac{1}{a}+\frac{1}{b}=k$, a constant. so $\frac{k}{a}+\frac{k}{b}=1 \Rightarrow$ line passes through the fixed point (k, k).]
16. Find the equation of the line which passes through the point $(-4,3)$ and the portion of the line intercepted between the axes is divided internally in the ratio $5: 3$ by this point. Ans : $9 x-20 y+96=0$
17. Find the equations of the lines through the point of intersection of the lines $x-y+1=0$ and $2 x-3 y+5=0$ and whose distance from the point $(3,2)$ is $7 / 5$. Ans: $3 x-4 y+6=0$ and $4 x-3 y+1=0$
18. If the sum of the distances of a moving point in a plane from the axes is 1 , then find the locus of the point. [Hint: Given that $|x|+|y|=1$, which gives four sides of a square.]
19. P1, P2 are points on either of the two lines $y-\sqrt{3}|x|=2$ at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.[Hint: Lines are $y=3 x+2$ and $y=-3 x+2$ according as $x \geq 0$ or $x<0$. y-axis is the bisector of the angles between the lines. P1, P2 are the points on these lines at a distance of 5 units from the point of intersection of these lines which have a point on y-axis as common foot of perpendiculars from these points. The y-coordinate of the foot of the perpendicular is given by $2+5 \cos 30^{\circ}$.]
20. If p is the length of perpendicular from the origin on the line $\frac{x}{a}+\frac{y}{b}=1$ and $\mathrm{a}^{2}, \mathrm{p}^{2}, \mathrm{~b}^{2}$ are in A.P., then show that $a^{4}+b^{4}=0$.
21. A line cutting off intercept -3 from the y-axis and the tangent of angle to the x-axis is $3 / 5$, its equation is..
22. Slope of a line which cuts off intercepts of equal lengths on the axes is....
23. The equation of the straight line passing through the point $(3,2)$ and perpendicular to the line $y=x$ is.....
24. The equation of the line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is.....
25. The tangent of angle between the lines whose intercepts on the axes are $a,-b$ and $b,-a$, respectively, is. \qquad
26. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points $(2,-3)$ and $(4,-5)$, then (a, b) is......
27. The equations of the lines which pass through the point $(3,-2)$ and are inclined at 60° to the line $\sqrt{ } 3 x+y=1$ is.....
28. The equations of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are. \qquad
29. The distance between the lines $y=m x+c_{1}$ and $y=m x+c_{2}$ is.
30. The coordinates of the foot of perpendiculars from the point $(2,3)$ on the line $y=3 x+4$ is given by....
31. If the coordinates of the mid point of the portion of a line intercepted between the coordinate axes is $(3,2)$, then the equation of the line will be.
32. Equations of diagonals of the square formed by the lines $x=0, y=0, x=1$ and $y=1$ are.
33. For specifying a straight line, how many geometrical parameters should be known?
34. The point $(4,1)$ undergoes the following two successive transformations :
(i) Reflection about the line $y=x$
(ii) Translation through a distance 2 units along the positive x-axis.

Then the final coordinates of the point are
35. A point equidistant from the lines $4 x+3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is
(A) $(1,-1)$
(B) $(1,1)$
(C) $(0,0)$
(D) $(0,1)$
36. The ratio in which the line $3 x+4 y+2=0$ divides the distance between the lines $3 x+4 y+5=0$ and
$3 x+4 y-5=0$ is
(A) $1: 2$
(B) $3: 7$
(C) $2: 3$
(D) $2: 5$
37. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is
(A) $(-1,-1)$
(B) $(2,2)$
(C) $(-2,-2)$
(D) $(2,-2)$
[Hint: Let ABC be the equilateral triangle with vertex $\mathrm{A}(h, k)$ and let $\mathrm{D}(\alpha, \beta)$ be the point on BC . Then $(2 \alpha+h) / 3=0$ and $(2 \beta+k) / 3=0$ Also $\alpha+\beta-2=0$ and $\{(\mathrm{k}-0) /(\mathrm{h}-0)\} \times(-1)=-1]$.
38. If a, b, c are in A.P., then the straight lines $a x+b y+c=0$ will always pass through \qquad .
39. The line which cuts off equal intercept from the axes and pass through the point $(1,-2)$ is \qquad .
40. Equations of the lines through the point $(3,2)$ and making an angle of 45° with the line $x-2 y=3$ are \qquad .
41. The points $(3,4)$ and $(2,-6)$ are situated on the \qquad of the line $3 x-4 y-8=0$.
42. A point moves so that square of its distance from the point $(3,-2)$ is numerically equal to its distance from the line $5 x-12 y=3$. The equation of its locus is \qquad .
43. Locus of the mid-points of the portion of the line $x \sin \alpha+y \cos \alpha=p$ intercepted between the axes is \qquad .

State whether the statements are true or false. Justify.

44. If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.

45 . The points $\mathrm{A}(-2,1), \mathrm{B}(0,5), \mathrm{C}(-1,2)$ are collinear.
46. Equation of the line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is $x \cos \theta-y \sin \theta=a \sin 2 \theta$.
47. The straight line $5 x+4 y=0$ passes through the point of intersection of the straight lines $x+2 y-10=0$ and $2 x+y+5=0$.
48. The vertex of an equilateral triangle is $(2,3)$ and the equation of the opposite side is $x+y=2$. Then the other two sides are $y-3=(2 \pm 3)(x-2)$.
49. The equation of the line joining the point $(3,5)$ to the point of intersection of the lines $4 x+y-1=0$ and $7 x-$ $3 y-35=0$ is equidistant from the points $(0,0)$ and $(8,34)$.
50. The lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent if a, b, c are in G.P.
51. Line joining the points $(3,-4)$ and $(-2,6)$ is perpendicular to the line joining the points $(-3,6)$ and $(9,-18)$.
52. The line $\frac{x}{a}+\frac{y}{b}=1$ moves in such a way that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is $x^{2}+y^{2}=c^{2}$.

