Vector Algebra Class XII

One Mark Questions

- 1. Find the direction ratios and direction cosines of $P\vec{Q}$ if P (1, 4, 7) and Q(2, 3, 5).
- 2. Using vectors show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.
- 3. Find a unit vector in the direction of the sum of the vectors a $\vec{a} = 3\hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 5\hat{k}$.
- 4. Find the value of p for which $(\hat{i} + \hat{j} + \hat{k})p$ is a unit vector.
- 5. Find a vector of magnitude 7 units in the direction of $\vec{a} = \hat{i} \hat{j} + 2\hat{k}$.
- 6. If the vector $a = 2\hat{i} 3\hat{j}$ and $b = -6\hat{i} + m\hat{j}$ are collinear, find the value of m.
- 7. If a vector makes angles α , β , γ with x-axis, y-axis, z-axis respectively, then what is the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$.
- 8. If the position vector "a" of the point (5,n) is such that |a| = 13, find the value of n.
- 9. Find the value of 'x' for which $x(\hat{i} + \hat{j} + k)$ is a unit vector.
- 10. Find the position vector of the mid point of the vector joining the points P(2,3,4) and Q(4,1,-2).
- 11. Find position vectors of the points which divides the join of the points 2a 3b and 3a 2b externally in the ratio 2:3.
- 12. For what values of ' λ ', the vectors (2î 3 ĵ) and (λ î 6ĵ) are parallel ?
- 13. Find a unit vector perpendicular to both $\vec{a} = 3\hat{i} + 3\hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 4\hat{k}$.
- 14. Find a vector of magnitude 6 units perpendicular to both $\vec{a} = 3\hat{i} 2\hat{j} \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 4\hat{k}$.
- 15. Find the angle between the vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} 5\hat{k}$.
- 16. For what value of λ are the vectors $\vec{a} = \hat{i} \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 5\hat{k}$ orthogonal?
- 17. If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ show that $\vec{a} + \vec{b}$ is perpendicular to $\vec{a} \vec{b}$.
- 18. Find the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} \hat{k}$, $\vec{b} = \hat{i} + \hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} 3\hat{k}$.
- 19. Find the projection of $\hat{i} + 3\hat{j} + 7\hat{k}$ on $7\hat{i} \hat{j} + 8\hat{k}$
- 20. Find the value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$
- 21. Define vector product of two vectors . If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 8$, find $\vec{a}.\vec{b}$
- 22.i) If $\left|\vec{a} + \vec{b}\right| = \left|\vec{a} \vec{b}\right|$ find the angle between \vec{a} and \vec{b} .
 - ii) If $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = 2$ and the angle between \vec{a} and \vec{b} is 60° find $\vec{a} \cdot \vec{b}$
 - iii) If $|\vec{a}| = 5$, $|\vec{b}| = 13$ and $|\vec{a} \times \vec{b}| = 25$, find $\vec{a}.\vec{b}$
 - iv)) If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 10$ find $|\vec{a} \vec{b}|$.
 - v) If $|\vec{a}| = 3$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 1$, find the angle between \vec{a} and \vec{b} .
 - vi) If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, find the projection of \vec{b} on \vec{a} .
 - vii) If $|\vec{a}| = 1$, $|\vec{b}| = 2$ and $|\vec{a} \times \vec{b}| = \sqrt{3}$, find the angle between \vec{a} and \vec{b} .

viii) If $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ find the angle between \vec{a} and \vec{b} . ix) If $|\vec{a}| = 3$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 6$ find $|\vec{a} + \vec{b}|$. x) If $|\vec{a}| = 2$, $|\vec{b}| = \sqrt{3}$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$, find $|\vec{a} \times \vec{b}|$ xi) If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, find $|\vec{a} \times \vec{b}|$. xii) If $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = 0$, find the value of p. 23. If $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$ find a unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. 24. i) Find $|\vec{a}|$ and $|\vec{b}|$ if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 3$ and $|\vec{a}| = 2|\vec{b}|$ ii) Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} + \vec{a}) \cdot (\vec{x} - \vec{a}) = 8$. 25. Find the value of λ for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} + \lambda\hat{j} + 3\hat{k}$ are i) parallel ii)

4 Marks Questions

- 26. If $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$ find i) a unit vector perpendicular to both \vec{a} and \vec{b}
 - ii) a vector of magnitude 10 units in the direction of $\vec{a} \vec{b}$.

perpendicular.

- iii) the area of a parallelogram whose adjacent sides are \vec{a} and \vec{b} .
- iv) the area of a parallelogram whose diagonals are \vec{a} and \vec{b} .
- 27. The vertices of a triangle are A(0, -1, -2), B(3, 1, 4) and C(5, 7, 1). Find the i) measure of angle ABC ii) area of ABC.
- 28. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a}.\vec{c} = 3$
- 29. If $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = 3\hat{j} \hat{k}$ and $\vec{c} = 7\hat{i} \hat{k}$. Find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 1$
- 30. If $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 18$.
- 31. The dot product of a vector with the vectors $\hat{i} \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are 4, 0 and 2 respectively. Find the vector.
- 32. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ .
- 33. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ and $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} find the value of λ .

- 34. Find a unit vector perpendicular to the plane ABC where position vector of points A, B and C are $\hat{i} 2\hat{j} \hat{k}$, $\hat{i} + 2\hat{j} 4\hat{k}$ and $2\hat{i} + 2\hat{j} 3\hat{k}$ respectively.
- 35. Show that the area of the parallelogram with diagonals $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$ square units.
- 36. Show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ form the sides of a right angled triangle.
- 37. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$ and $|\vec{b}| = 5$ and $|\vec{c}| = 7$, show that the angle between \vec{a} and \vec{b} is 60° .
- 38. If \vec{a} , \vec{b} , \vec{c} are such that each is perpendicular to the sum of the other two and $|\vec{a}| = 3 |\vec{b}| = 4$ and $|\vec{c}| = 5$, find $|\vec{a} + \vec{b} + \vec{c}|$
- 39. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$ and $|\vec{b}| = 4$ and $|\vec{c}| = 5$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- 40. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, then prove that $\vec{a} + \vec{b} + \vec{c}$ makes equal angles with \vec{a} , \vec{b} and \vec{c} .
- 41. If \vec{a} , \vec{b} and \vec{c} are three vectors such that each one of them is perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.
- 42. Express the vector $\vec{a} = 5\hat{i} 2\hat{j} + 5\hat{k}$ as a sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{i} + k$ and the other is perpendicular to \vec{b} .
- 43. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then show that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- 44. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A,B,C of a triangle ABC, prove that its area is $\frac{1}{2}|\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}|$
- 45. Prove that for any vector \vec{a} , $\vec{a} = (\vec{a} \cdot \hat{i})i + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k}$
- 46. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$; $\vec{b} \times \vec{c} = \vec{a}$, Prove that \vec{a} , \vec{b} and \vec{c} are mutually perpendicular and $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$
- 47. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}.\vec{b} = \vec{a}.\vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq 0$, then show that $\vec{b} = \vec{c}$.

48. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ then prove that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$.

- 49. For any two vectors \vec{a} and \vec{b} , prove that $\left|\vec{a} \times \vec{b}\right|^2 = \vec{a}^2 \vec{b}^2 (\vec{a} \cdot \vec{b})^2$
- 50. The sum of two unit vectors is a unit vector. Prove that magnitude of their difference is $\sqrt{3}$.

