Vector Algebra Class XII

One Mark Questions

1. Find the direction ratios and direction cosines of $P \vec{Q}$ if $P(1,4,7)$ and $Q(2,3,5)$.
2. Using vectors show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
3. Find a unit vector in the direction of the sum of the vectors a $\vec{a}=3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+5 \hat{k}$.
4. Find the value of p for which $(\hat{i}+\hat{j}+\hat{k}) p$ is a unit vector.
5. Find a vector of magnitude 7 units in the direction of $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$
6. If the vector $a=2 \hat{\imath}-3 \hat{\jmath}$ and $b=-6 i ̂+m \hat{\jmath}$ are collinear, find the value of m.
7. If a vector makes angles $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ with x-axis, y-axis, z-axis respectively, then what is the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.
8. If the position vector "a" of the point $(5, n)$ is such that $|a|=13$, find the value of n.
9. Find the value of ' \mathbf{x} ' for which $\mathbf{x}(\hat{\imath}+\hat{\jmath}+k)$ is a unit vector.
10. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.
11. Find position vectors of the points which divides the join of the points $2 a-3 b$ and $3 a-2 b$ externally in the ratio $2: 3$.
12. For what values of ' λ ', the vectors ($2 \hat{\imath}-3 \hat{\jmath}$) and ($\lambda \hat{\imath}-6 \hat{\jmath}$) are parallel?
13. Find a unit vector perpendicular to both $\vec{a}=3 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+4 \hat{k}$.
14. Find a vector of magnitude 6 units perpendicular to both $\vec{a}=3 \hat{i}-2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+4 \hat{k}$.
15. Find the angle between the vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-5 \hat{k}$.
16. For what value of λ are the vectors $\vec{a}=\hat{i}-\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}$ orthogonal?
17. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ show that $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$.
18. Find the projection of $\vec{b}+\vec{c}$ on \vec{a}, where $\vec{a}=2 \hat{i}-2 \hat{j}-\hat{k}, \vec{b}=\hat{i}+\hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$.
19. Find the projection of $\hat{i}+3 \hat{j}+7 \hat{k}$ on $7 \hat{i}-\hat{j}+8 \hat{k}$
20. Find the value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$
21. Define vector product of two vectors. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, find $\vec{a} \cdot \vec{b}$
22.i) If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ find the angle between \vec{a} and \vec{b}.
ii) If $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=2$ and the angle between \vec{a} and \vec{b} is 60° find $\vec{a} \bullet \vec{b}$
iii) If $|\vec{a}|=5,|\vec{b}|=13$ and $|\vec{a} \times \vec{b}|=25$, find $\vec{a} \cdot \vec{b}$
iv)) If $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=10$ find $|\vec{a}-\vec{b}|$.
v) If $|\vec{a}|=3,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=1$, find the angle between \vec{a} and \vec{b}.
vi) If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$, find the projection of \vec{b} on \vec{a}.
vii) If $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{a} \times \vec{b}|=\sqrt{3}$, find the angle between \vec{a} and \vec{b}.
viii) If $|\vec{a} \bullet \vec{b}|=|\vec{a} \times \vec{b}|$ find the angle between \vec{a} and \vec{b}.
ix) If $|\vec{a}|=3,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=6$ find $|\vec{a}+\vec{b}|$.
x) If $|\vec{a}|=2,|\vec{b}|=\overline{\sqrt{3}}$ and $\vec{a} \cdot \vec{b}=\overline{\sqrt{3}}$, find $|\vec{a} \times \vec{b}|$
xi) If $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, find $|\vec{a} \times \vec{b}|$.
xii) If $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+3 \hat{j}+p \hat{k})=0$, find the value of p.
22. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ find a unit vector perpendicular to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.
24.i) Find $|\vec{a}|$ and $|\vec{b}|$ if $(\vec{a}+\vec{b}) \bullet(\vec{a}-\vec{b})=3$ and $|\vec{a}|=2|\vec{b}|$
ii) Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}+\vec{a}) \bullet(\vec{x}-\vec{a})=8$.
23. Find the value of λ for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}+\lambda \hat{j}+3 \hat{k}$ are i) parallel ii) perpendicular.

4 Marks Questions

26. If $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$ find i) a unit vector perpendicular to both \vec{a} and \vec{b}
ii) a vector of magnitude 10 units in the direction of $\vec{a}-\vec{b}$.
iii) the area of a parallelogram whose adjacent sides are \vec{a} and \vec{b}.
iv) the area of a parallelogram whose diagonals are \vec{a} and \vec{b}
27. The vertices of a triangle are $A(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$. Find the i) measure of angle $A B C$ ii) area of $A B C$.
28. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$
29. If $\vec{a}=\hat{i}-\hat{j}, \vec{b}=3 \hat{j}-\hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$. Find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=1$
30. If $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$.
31. The dot product of a vector with the vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are 4,0 and 2 respectively. Find the vector.
32. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to 1 . Find the value of λ.
33. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ and $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c} find the value of λ.
34. Find a unit vector perpendicular to the plane ABC where position vector of points A, B and C are $\hat{i}-2 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}-4 \hat{k}$ and $2 \hat{i}+2 \hat{j}-3 \hat{k}$ respectively.
35. Show that the area of the parallelogram with diagonals $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$ is $5 \sqrt{3}$ square units.
36. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the sides of a right angled triangle.
37. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3$ and $|\vec{b}|=5$ and $|\vec{c}|=7$, show that the angle between \vec{a} and \vec{b} is 60°.
38. If $\vec{a}, \vec{b}, \vec{c}$ are such that each is perpendicular to the sum of the other two and $|\vec{a}|=3|\vec{b}|=4$ and $|\vec{c}|$ $=5$, find $|\vec{a}+\vec{b}+\vec{c}|$
39. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3$ and $|\vec{b}|=4$ and $|\vec{c}|=5$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
40. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, then prove that $\vec{a}+\vec{b}+\vec{c}$ makes equal angles with \vec{a}, \vec{b} and \vec{c}.
41. If \vec{a}, \vec{b} and \vec{c} are three vectors such that each one of them is perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
42. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as a sum of two vectors such that one is parallel to the vector $\bar{b}=3 \hat{i}+k$ and the other is perpendicular to \bar{b}
43. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.
44. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B, C of a triangle $A B C$, prove that its area is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{a} \times \vec{a}|$
45. Prove that for any vector $\vec{a}, \vec{a}=(\vec{a} \cdot \hat{i}) i+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}$
46. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c} ; \vec{b} \times \vec{c}=\vec{a}$, Prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular and $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$
47. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \cdot \vec{b}=\vec{a} . \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$, then show that $\vec{b}=\vec{c}$.
48. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then prove that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$.
49. For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a} \times \vec{b}|^{2}=\vec{a}^{2} \vec{b}^{2}-(\vec{a} \cdot \vec{b})^{2}$
50. The sum of two unit vectors is a unit vector. Prove that magnitude of their difference is $\sqrt{3}$.

