Class : XII Mathematics

1. Find the Cartesian equation of the following planes:
i) $\overrightarrow{\mathrm{r}} \cdot(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=2$
ii) $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})=1$
iii) $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+\hat{\mathrm{k}})=3$ iv)
$\vec{r} \cdot(-\hat{i}+2 \hat{j}+3 \hat{k})=(2 \hat{i}-\hat{k}) \cdot(-\hat{i}+2 \hat{j}+3 \hat{k})$
2. Write the vector equation of the following planes:
i) $3 x-5 y+4 z=1$
ii) $2 x-z+4=0$
iii) $x-2 y+2 z-9=0$
3. Find a unit normal vector to the following planes:
i) $x+2 y+3 z-6=0$
ii) $2 x-3 y+6 z+14=0$
iii) $\overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+20 \hat{\mathrm{k}})+3=0$
4. Reduce the following equations to normal form and hence find the length of perpendicular from the origin to the plane:
i) $x-2 y+2 z-9=0$
ii) $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})+6=0$
iii) $2 x-3 y+6 z+14=0$
5. Find the vector equation of the plane in the dot product form, through the point $(2,-1,5)$ and perpendicular to the vector $\hat{i}+2 \hat{j}+\hat{k}$.
6. Find the cartesian equation of the plane in the normal form, through the point $(-2,-6,5)$ and perpendicular to the vector $3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$.
7. Find the vector equation of a plane which is at the given distance from the origin and normal to the given vector.
i) 5 units, $2 \hat{i}-\hat{j}+3 \hat{k}$
ii) 3 units, $\hat{\mathrm{i}}+\hat{\mathrm{k}}$
iii) 5 units, $3 \hat{i}-2 \hat{j}+4 \hat{k}$
8. Find the equation of the plane passing through the given point and perpendicular to the given vector:
i) $(2,1,-1), \hat{i}-2 \hat{j}+3 \hat{k}$
ii) origin, $5 \hat{\mathrm{i}}-3 \hat{\mathrm{k}}$
iii) $(2,-3,1)$; normal passes through ($3,4,-1$) and ($2,-1,5$).
9. Find the equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line through the points $(-3,1,2)$ and ($2,3,4$).
10. Find the coordinates of the foot of the perpendicular drawn from the origin:
i) $2 x+3 y+4 z-58=0$
ii) $3 y+4 z+50=0$
iii) $x+y+z+3=0$
11. Find the equation of the plane when the foot of the perpendicular drawn from origin to the plane is given:
i) foot of perpendicular $=(3,-4,2)$
ii) $(4,-2,-5)$
12. Find the equation of the plane passing through the following points:
i) $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$
ii) $(1,-2,5),(0,-5,-1)$ and $(-3,5,0)$
iii) $(0,0,0),(2,1,0)$ and ($1,1,2$)
iv) $(0,3,0),(2,1,0)$ and (1, 1, 2)
v) $(4,5,1),(3,9,4)$ and $(-4,4,4)$
vi) $(3,-1,2),(4,-1,-1)$ and (2, 0, 2)
vii) $(0,6,4),(1,5,4)$ and $(4,-2,0)$
viii) $(2,5,-3),(-2,-3,5)$ and $(5,3,-3)$.
13. Find the vector equation of the plane in the dot product form, through the points $(2,-1,5),(1,-3,4)$ and (4, - 2, 0).
14. Prove that the points $(0,6,4),(1,5,4)$ and $(2,4,4)$ and $(2,6,2)$ are coplanar. Also find the equation of the plane containing these points.
15. Show that the following points are coplanar: Also find the equation of the plane containing these points. i) $(0,-1,0),(2,1,-1),(1,1,1)$ and $(3,3,0)$ ii) $(-1,4,-3),(3,2,-5),(-3,8,-5)$ and $(-3,2,1)$
16. Prove that the points with position vectors $6 \hat{i}+2 \hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k},-\hat{i}+2 \hat{j}-4 \hat{k}$ and $-12 \hat{i}-\hat{j}-3 \hat{k}$ are coplanar.
17. Find the value of λ so that the points with the position vectors $-\hat{\mathrm{j}}+\hat{\mathrm{k}}, 2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}, \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ are coplanar.
18. Show that the plane through $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is perpendicular to $x z-$ plane.
19. Find the intercepts cut off by the following planes with the axes:
i) $x+2 y-3 z=9$
ii) $2 x-3 y+z=-6$
iii) $2 x+6 y-3 z+3=0$
20. A plane meets the coordinate axes at A, B and C such that centroid of $\triangle A B C$ is $(3,4,-6)$. Find the equation of plane.
21. A plane meets the coordinate axes at A, B and C such that the centroid of $\Delta A B C$ is $(-3,2,4)$. Find equation of the plane.
22. Find the equation of the plane which makes equal intercepts on the axes and passes through the point $(1,-3,6)$.
23. A plane meets the x, y and z axes at A, B and C respectively such that the centroid of the triangle $A B C$ is (p, q, r).

Prove that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$
24. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A, B and C. Prove that the locus of the centroid of the triangle $A B C$ is $\frac{1}{x^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$
25. Find the equation of the plane containing the following lines:
i) $\vec{r}=(3 \hat{i}-\hat{j}+4 \hat{k})+\lambda(12 \hat{i}-\hat{k})$
i)
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\mu(\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
iii) $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+t(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+s(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$
iv) $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{2}$ and $\frac{x+2}{0}=y=\frac{z+1}{3}$
v) $\frac{x}{1}=\frac{y}{2}=\frac{z-1}{0}$ and $\vec{r}=3 \hat{i}-2 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})$
vi) $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z}{-1}$ and $\frac{x+2}{3}=\frac{y-2}{-2}=\frac{z+2}{3}$
vii) $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7}$
viii) $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$
ii) $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}})+\lambda(\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
x) $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$
xi)

$$
\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \& \frac{x-2}{2}=\frac{y-4}{-1}=\frac{z-6}{1}
$$

26. Find the equation of the plane through the point of intersection of the planes $x+2 y-z=1$ and $x+y+2 z+1=0$ perpendicular to the plane $2 x+2 y-z=0$.
27. i) Find the equation of the plane passing through the origin and the line of intersection of the planes $x-2 y+3 z+4=0$ and $x-y+z+3=0$.
ii) Find the equation of the plane passing through the origin and the line of intersection of the planes $x+2 y-5 z+1=0$ and $2 x-y+3 z-11=0$.
iii) Find the equation of the plane passing through ($2,1,-1$) and the intersection of the planes
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})=0$ and $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=0$
iv) Find the equation of the plane passing through $(1,2,-3)$ and the intersection of the planes $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=5$ and $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-3 \hat{\mathrm{k}})=2$.
v) Find the equation of the plane passing through $(1,1,1)$ and the intersection of the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+1=0$ and. $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})-5=0$.
vi) Find the equation of the plane passing through $(-2,1,3)$ and the intersection of the planes $\overrightarrow{\mathrm{r}} \cdot(-\hat{\mathrm{i}}+3 \hat{\mathrm{j}})=2$ and $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+5 \hat{\mathrm{k}})-1=0$.
vii) Find the equation of the plane passing through $(1,1,1)$ and the intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$.
viii) Find the equation of the plane passing through $(0,0,1)$ and the intersection of the planes $2 x+3 y-z=-4$ and $3 x-2 y+4 z-1=0$.
ix) Find the equation of the plane through the point $(1,-2,0)$ and through the intersection of the planes $3 x+2 y-z=4$ and $x+y-2 z-2=0$.
x) Find the equation of the plane through the intersection of the planes $x+2 y+z=4$ and $3 x+y-z-1=0$ and through the origin.
28. i) Find the equation of the plane passing through the line of intersection of the planes $x+y+z+1=0$ and $2 x-y+3 z+4=0$ and parallel to the line $\vec{r}=(3 \hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}+\hat{j}-3 \hat{k})$.
ii) Find the equation of the plane passing through the line of intersection of the planes $2 x+y-z=3$ and $5 x-3 y+4 z+9=0$ and parallel to the line $\vec{r}=\hat{i}+3 \hat{j}+5 \hat{k}+\lambda(2 \hat{i}+4 \hat{j}+5 \hat{k})$.
iii) Find the equation of the plane passing through the line of intersection of the planes $2 x-3 y+4 z=0$ and $3 x+y-z=5$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-2}=\frac{z-1}{3}$.
iv) Find the equation of the plane passing through the line of intersection of the planes $4 x-y+z=0$ and $x+y-z=4$ and parallel to the line with direction ratios $2,1,1$.
29. i) Find the equation of the plane passing through the line of intersection of the planes $2 x-3 y+z-4=0$ and $x-y+z+1=0$ and perpendicular to the plane $x+2 y-3 z+6=0$.
ii) Find the equation of the plane passing through the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$ and perpendicular to the plane $5 x+3 y+6 z+1=0$.
iii) Find the equation of the plane passing through the line of intersection of the planes $x+y+z=0$ and $3 x-y+2 z-1=0$ and perpendicular to the plane $2 x+3 y-5 z+10=0$.
iv) Find the equation of the plane passing through the line of intersection of the planes
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=$ 1and $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}})+4=0$ and perpendicular to the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}})+8=0$.
v) Find the equation of the plane through the intersection of the planes $x+2 y-z=1$ and $x+y+2 z+1=0$ and perpendicular to the plane $2 x+2 y-z=0$.
30. i) Find the equation of the plane passing through $(3,4,-1)$ and parallel to the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})+7=0$
ii) Find the equation of the plane passing through $(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=0$.
iii) Find the equation of the plane passing through (1, 4, -2) and parallel to the plane $-2 x+y-3 z=7$.
31. i) Find the equation of the plane passing through $(2,-3,0)$ and parallel to the lines $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}+\mu(3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$
ii) Find the equation of the plane passing through ($1,0,1$) and parallel to the lines $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=\hat{\mathrm{j}}+2 \hat{\mathrm{k}}+\mu(\hat{i}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
iii) Find the equation of the plane passing through $(1,1,1)$ and parallel to the lines $\frac{x-3}{1}=\frac{y}{-2}=\frac{z+1}{3}$ and $\frac{x}{2}=\frac{y+2}{3}=\frac{z}{-4}$
iv) Find the equation of the plane passing through $(1,0,0)$ and parallel to the lines $\overrightarrow{\mathrm{r}}=-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}})$ and $\frac{x+1}{-2}=\frac{1-y}{1}=\frac{z}{4}$
v) Find the equation of the plane passing through ($2,-3,2$) and parallel to the lines $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=\hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mu(\hat{i}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
vi) Find the equation of the plane passing through ($2,0,-1$) and parallel to the lines $\frac{x}{-3}=\frac{y-2}{4}=\frac{z+1}{1}$ and $\frac{x-4}{1}=\frac{1-y}{2}=2 z$
32. i) Find the equation of the plane passing through $(1,-1,2)$ and perpendicular to each of the planes $3 x+2 y-3 z-1=0$ and $5 x-4 y+z=5$.
ii) Find the equation of the plane passing through ($-1,3,2$) and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.
iii) Find the equation of the plane passing through $(2,-1,5)$ and perpendicular to each of the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})=1 \quad$ and $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+\hat{\mathrm{k}})=5$
iv) Find the equation of the plane passing through (1, 1, - 1) and perpendicular to each of the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=7$ and $\overrightarrow{\mathrm{r}} \cdot(2 \hat{i}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=0$
v) Find the equation of the plane passing through a point with position vector $\vec{a}=2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}$ and perpendicular to each of the planes $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+1=0 \quad$ and $\overrightarrow{\mathrm{r}} \cdot(4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})+6=0$
vi) Find the equation of the plane passing through origin and perpendicular to each of the planes
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})-5=0$ and $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})-8=0$
vii) Find the equation of the plane through the points $(1,-3,4)$ and perpendicular to the planes $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=3$ and $3 \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=1$
33. i) Find the equation of the plane through the point ($-1,-2,0$) and containing the line $\frac{x+1}{-2}=\frac{y-2}{3}=\frac{z+\beta}{2}$
ii) Find the equation of the plane through the point ($2,-2,1$) and containing the line $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}})$
iii) Find the equation of the plane passing through ($0,7,-7$) and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ 34. Find the equation of the plane passing through the point of intersection of lines $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+1}{2}$ and $\frac{x+3}{2}=\frac{y-2}{3}=\frac{z+7}{-2}$ and is parallel to the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-1}=\frac{y}{4}=\frac{z+2}{-3}$
34. i) Find the equation of the plane passing through the points ($3,2,2$) and ($1,0,-1$) and parallel to the line $\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z-2}{3}$
ii) Find the equation of the plane through the points $(0,6,4),(1,5,4)$ and parallel to the line $\overrightarrow{\mathrm{r}}=(1-2 t) \hat{\mathrm{i}}+(3-2 t) \hat{\mathrm{j}}+(3 \mathrm{t}-2) \hat{\mathrm{k}}$
iii) Find the equation of the plane passing through the points (2, 2, - 1) and ($3,4,2$) and parallel to the line with direction ratios 7,0 and 6 .
iv) Find the equation of the plane passing through the points $(-1,1,1)$ and ($1,-1,1$) and perpendicular to the plane

$$
x+2 y+2 z=5
$$

v) Find the equation of the plane through the points $(0,6,4)$ and $(1,5,4)$ and perpendicular to the plane $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=3$
vi) Find the equation of the plane through the points $(0,6,4),(1,5,4)$ and perpendicular to the plane $3 x+2 y-3 z=4$.
36. Find the angle between the following planes:
i) $2 x-y+z=6$
\& $x+y+2 z=7$
ii) $2 x-3 y+4 z-1=0 \quad \& \quad-x+y=4$
iii) $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}})=1 \quad \& \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{k}})=3$
iv) $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})-1=0$ and $\overrightarrow{\mathrm{r}} \cdot(4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+2=0$
37. Find the angle between the following lines \& planes:
i) $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4} \& 2 x+y-3 z+4=0$
ii) $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ \& $10 \mathrm{x}+2 \mathrm{y}-11 \mathrm{z}=3$
iii) $\frac{x+3}{3}=\frac{y-2}{2}=\frac{z+3}{6} \overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=6$
iv) $\overrightarrow{\mathrm{r}}=(3-t) \hat{\mathrm{i}}+(4+2 \mathrm{t}) \hat{\mathrm{j}}+(\mathrm{t}-2) \hat{\mathrm{k}} \& \overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})=6$
v) $\overrightarrow{\mathrm{r}}=5 \hat{\mathrm{i}}-\hat{\mathrm{j}}-4 \hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \& \overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})+5=0$
vi) $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=4$
38. Find the distance of the following points from the given planes:
i) $(2,1,-1) ; x-2 y+4 z=9$
ii) $(3,-2,4) ; \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+2=0$
iii) $(3,4,5) ; \overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=29$
39. Find the cartesian equation of the plane in the normal form, through the point $(-2,-6,5)$ which is also the foot of the perpendicular from the point $(2,3,2)$.
40. Find the length and foot of the perpendicular from the point:
i) $(7,14,5)$ to the plane $2 x+4 y-z=2$
ii) origin to the plane $2 x-3 y+4 z-6=0$
iii) $(1,2,3)$ to $3 x+y-2 z+15=0$
iv) $(0,1,3)$ to $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})-1=0$
v) $\hat{i}+\hat{j}+2 \hat{k}$ to $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$
41. Find the image of the given point in the given plane:
i) $(5,-4,2)$ in $8 x-5 y-z-13=0$
ii) $(1,3,-4)$ in $3 x+y-2 z=0$
iii) $(1,3,4)$ in $2 x-y+z+3=0$
iv) $(-1,-1,3)$ in $2 x+3 y-4 z-10=0$
v) $(-1,2,0)$ in the plane $x-2 y+2 z=1$
vi) $(2,-1,5)$ from the plane $x+2 y-2 z=4$
42. Find the distance between the planes $x+2 y-2 z=4$ and $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})=6$
43. i) Find the distance of the point $(0,-3,2)$ from the plane $2 x+y-z=5$ measured parallel to the line $\frac{x}{-2}=\frac{y}{3}=\frac{z-1}{6}$
ii) Find the distance of the point $(2,3,4)$ from the plane $3 x+2 y+2 z+5=0$ measured parallel to the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2}$
iii) Find the distance of the point $(2,-1,1)$ from the plane $x+2 y-2 z=4$ measuring parallel to the line $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{2}$
iv) Find the distance of the point $(\hat{i}+2 \hat{j}+3 \hat{k})$ from the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$ measured parallel to the vector $2 \hat{i}+3 \hat{j}-6 \hat{k}$
v) Find the distance of the point $(2,0,1)$ from the plane $x+2 y-2 z=4$ measuring parallel to the line $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+1}{2}$
vi) Find the distance of the point $(2,-1,5)$ from the plane $x+2 y-2 z=4$ measured parallel to the line $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{2}$
44. Find the distance of the point $(2,-1,5)$ from the line $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{2}$ measuring along the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})-1=0$
45. Find the distance between the parallel planes:
i) $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+5=0$ and $\overrightarrow{\mathrm{r}} \cdot(4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+8=0$
ii) $2 x-y+3 z-4=0$ and $6 x-3 y+9 z+13=0$
46. i) Show that the line $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ is parallel to the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+5 \hat{\mathrm{j}}+\hat{k})=5$ and find the distance between them.
ii) Show that the line $\overrightarrow{\mathrm{r}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ is parallel to the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})=1$ and find the distance between them.
47. i) Find the point of intersection between the lines $\frac{x+1}{1}=\frac{y}{-2}=\frac{z-1}{2}$ and the plane $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=0$.
ii) Find the point of intersection between the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ and the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}})=6$
48. Find the equation of the plane through the point $(1,5,4)$ perpendicular to the plane $3 x+2 y-3 z=4$ and parallel to the line $\overrightarrow{\mathrm{r}}=(3+2 s) \hat{\mathrm{i}}+(\mathrm{s}-7) \hat{\mathrm{j}}+(2 s-2) \hat{\mathrm{k}}$
49. Find the vector equation of the following plane in the dot product form $\overrightarrow{\mathrm{r}}=(\hat{i}+\hat{\mathrm{j}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
50. Find the vector equation of the following plane in the dot product form

$$
\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

3D GEOMETRY - TEST YOURSELF

1. Find vector and Cartesian equations of the median $A D$ of the triangle $A B C$ with the vertices at $A(2,3,4), B(1,6,9)$ and $C(0,2,3)$.
2. Find the angle between the line $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
3. Find the foot of the perpendicular from the point $(2,-1,5)$ in the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$ And also find the length of the perpendicular.
4. Find the image of the point $(1,0,4)$ in the line $\frac{x-2}{1}=\frac{y-4}{-5}=\frac{z}{5}$
5. Find the point of intersection between the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ if they intersect.
6. Find the distance between the point $(2,-1,5)$ and the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$
7. Find the shortest distance between the lines whose vector equations are $\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and

$$
\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

8. Find the shortest distance between lines whose equations are $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ and $x=\frac{y-2}{2}=\frac{z+3}{3}$
9. Find the shortest distance between lines whose equations are $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ and $\frac{x-2}{2}=\frac{y+3}{3} ; z=2$
10. Find the shortest distance and the equation of line of line of shortest distance between lines whose equations are $\overrightarrow{\mathrm{r}}=(1+s) \hat{\mathrm{i}}+(3 \mathrm{~s}-7) \hat{\mathrm{j}}+(2 s-2) \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{r}}=(3-t) \hat{\mathrm{i}}+(4+2 \mathrm{t}) \hat{\mathrm{j}}+(\mathrm{t}-2) \hat{\mathrm{k}}$ 11. Find λ so that the lines $\frac{2 x-4}{2 \lambda}=\frac{1-y}{3}=\frac{2 z-3}{3}$ and $\frac{5 x-10}{2}=\frac{7-7 y}{2 \lambda}=\frac{z-1}{2}$ are orthogonal
11. Show that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ int er $\sec t$.Also find the po int of int er \sec tion.

Planes

13. Find the vector and Cartesian equation of the plane , through the point $(2,-1,5)$ and perpendicular to the vector $\hat{i}+2 \hat{j}+\hat{k}$
14. Find the Cartesian equation of the plane, through the point $(-2,-6,5)$ which is also the foot of the perpendicular from the point $(2,3,2)$
15. Find the vector equation of the plane , through the points $(2,-1,5),(1,-3,4)$ and $(4,-2,0)$.
16. Prove that the points $(0,6,4),(1,5,4)$ and $(2,4,4)$ and $(2,6,2)$ are coplanar. Also find the equation of the plane containing these points.
17. Find the equation of the plane through the points $(0,6,4),(1,5,4)$ and perpendicular to the plane $3 x+2 y-3 z=4$
18. Find the equation of the plane through the points $(1,-3,4)$ and perpendicular to the planes $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=3$ and $3 \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=1$
19. Find the point of intersection between the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ and the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}})=6$
20. Find the angle between the line $\frac{x+3}{3}=\frac{y-2}{2}=\frac{z+3}{6}$ and the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=6$
21. Find the angle between the line $\vec{r}=(3-t) \hat{i}+(4+2 t) \hat{j}+(t-2) \hat{k}$ and the plane $\vec{r} \cdot(3 \hat{i}+2 \hat{j}-\hat{k})=6$
22. Find the image of the point $(-1,2,0)$ in the plane $x-2 y+2 z=1$
23. Find the equation of the plane through the points $(0,6,4),(1,5,4)$ and parallel to the line $\overrightarrow{\mathrm{r}}=(1-2 t) \hat{\mathrm{i}}+(3-2 t) \hat{\mathrm{j}}+(3 \mathrm{t}-2) \hat{\mathrm{k}}$
24. Find the equation of the plane through the point $(-1,-2,0)$ and containing the line $\frac{x+1}{-2}=\frac{y-2}{3}=\frac{z+3}{2}$
25. Find the equation of the plane containing the lines $\vec{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(4 \hat{i}-2 \hat{j}+2 \hat{k})$ and $\frac{x-2}{2}=\frac{y-4}{-1}=\frac{z-6}{1}$
26. Find the equation of the plane through the point $(1,5,4)$ perpendicular to the plane $3 x+2 y-3 z=4$ and parallel to the line $\overrightarrow{\mathrm{r}}=(3+2 s) \hat{\mathrm{i}}+(\mathrm{s}-7) \hat{\mathrm{j}}+(2 s-2) \hat{\mathrm{k}}$
27. Find the distance between the point $(2,-1,5)$ and the plane $x+2 y-2 z=4$
28. Find the distance of the point $(2,0,1)$ from the plane $x+2 y-2 z=4$ measured parallel to the line $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+1}{2}$
29. Find the distance of the point $(2,-1,5)$ from the line $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{2}$ measured along the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})-1=0$
30. Find the equation of the plane through the point $(1,-2,0)$ and through the point of intersection of the planes to the planes $3 x+2 y-z=4$ and $x+y-2 z-2=0$.
31. Find the equation of the plane through the point of intersection of the planes to the planes $x+2 y-z=1$ and $x+y+2 z+1=0$ perpendicular to the plane $2 x+2 y-z=0$.
32. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A, B and C. Prove that the locus of the centroid of the triangle $A B C$ is $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$
33. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane determined by the points $A(1,2,3), B(2,2,1)$ and $C(-1,3,6)$
34. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5} ; \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing them.
35. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $(3,-1,2),(5,2,4)$ and (-1, -1, 6).
36. Find the distance of the point $(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$
37. Find the point through which the line joining the points $(-1,2,3)$ and $(4,5,1)$ cross the $X Z$ plane.
38. Find the equation of a line passing through the point $(1,2,3)$ and parallel to the planes $2 x+3 y-4 z+5=0$ and $x-2 y+5 z-1=0$
39. Find the equation of a line through the point $(-1,2,3)$ which is perpendicular to the lines

$$
\frac{x-1}{2}=\frac{2 y-1}{-4}=\frac{z+2}{-1} \text { and } \frac{x+3}{-1}=\frac{y+2}{2}=\frac{z-1}{3}
$$

