Relations, Functions, Binary operations and Inverse Trigonometric Functions

1. Prove that the relation R on the set Z defined by $(x, y) \in R \Leftrightarrow x-y$ is divisible by 3 is an equivalence relation.
2. Prove that the relation R on the set $N X N$ defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ is an equivalence relation.
3. Prove that the relation R on the set $N X N$ defined by $(a, b) R(c, d) \Leftrightarrow a d=b c$ is an equivalence relation.
4. Prove that the relation R on the set $N X N$ defined by $(a, b) R(c, d) \Leftrightarrow a d(b+c)=b c(a+d)$ is an equivalence relation.
5. Check whether the relation R on the set of real numbers defined by $(a, b) \in R \Leftrightarrow 1+a b>0$ is equivalence relation.
6. Check whether the following functions are bijective if so, find their inverse also
a). $f: R \rightarrow R$ defined by $f(x)=4 x^{3}+8$
b). $\quad f: R \rightarrow R$ defined by $f(x)=(x+1)^{2}-1 x, y \geq-1$
c). $f:[0,2] \rightarrow:[0,2]$ defined by $f(x)=\sqrt{4-x^{2}}$
d) $\quad \mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})= \begin{cases}x+1 & \text { if } x \text { is odd } \\ x-1 & \text { if } x \text { is even }\end{cases}$
e) $f: R_{+} \rightarrow[-5, \infty]$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with
$\mathrm{C}^{1}(\mathrm{y})=\frac{\sqrt{y-6}-1}{3}$
f) $\mathrm{f}: \mathrm{R}_{+} \rightarrow[4, \infty]$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$ Show that f is invertible with $\mathrm{f}^{1}(\mathrm{y})=\sqrt{y-4}$
g) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=|x|$
7. If $\mathrm{f}(\mathrm{x})=\frac{x-1}{x+1}$ prove that $\mathrm{f}(2 \mathrm{x})=\frac{3 f(x)+1}{f(x)+3}$
8. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$, find fog and gof
9. Given $\mathrm{f}(\mathrm{x})=\frac{2 x+5}{4 x+3}$ if $\operatorname{fog}(\mathrm{x})=\mathrm{x}$, then find g
10. If $\mathrm{f}(\mathrm{x})=\log \frac{1+x}{1-x}$ and $\mathrm{g}(\mathrm{x})=\frac{3 x+x^{3}}{1+3 x^{2}}$ then prove that $\operatorname{fog}(\mathrm{x})=3 \mathrm{f}(\mathrm{x})$
11. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$ find fog and gof
12. On the set Q^{+}of all positive rational numbers define a binary operation * by $a * b=a b / 2$. Show that * is commutative and associative. Also find the identity element, if any for* on Q^{+}, Also find the inverse of $\mathrm{a} \in \mathrm{Q}^{+}$if it exists
13. Let * be a binary operation on Z defined by $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}+1$, Check whether $*$ is commutative and associative. Find the identity element if any. find also the inverse element of $\mathrm{a} \in \mathrm{Z}$
14. Let $\mathrm{A}=\{1,-1, \mathrm{i} . \mathrm{i} \mathrm{i}\}$ where $\mathrm{i}=\sqrt{-1}$. Draw an operation table for the operation 'multiplication'. Is it a binary operation? If so find the identity element and inverse of each element of A if they exist.
15. Let *: Q X Q: $\rightarrow \mathrm{Q}$ defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$, Check whether * is commutative and associative. Also find the identity element and inverse of each a in Q if they exist.
16. Show that the operations "Union"and "Intersection" of sets defined on the powerset of a nonempty set A is a binary operation. Also prove that these operations are commutative and associative. Also find the identity elements for the operations.
17. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ Give an example for a relation in A which is
a. reflexive but neither symmetric nor transitive
b. reflexive and symmetric but not transitive
18. $\mathrm{f}: \mathrm{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathrm{R}-\left\{\frac{3}{5}\right\}$ be defined \quad as $\quad \mathrm{f}(\mathrm{x})=\frac{3 \mathrm{x}+4}{5 \mathrm{x}-7} \quad$ and $\quad \mathrm{g}: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}-\left\{\frac{7}{5}\right\} \quad$ be defined as $\mathrm{g}(\mathrm{x})=\frac{7 \mathrm{x}+4}{5 \mathrm{x}-3}$. Show that $g \circ f=I_{A}$ and $\mathrm{f} \circ \mathrm{g}=\mathrm{I}_{\mathrm{B}}$ where $\mathrm{B}=\mathrm{R}-\left\{\frac{3}{5}\right\}$ and $\mathrm{A}=\mathrm{R}-\left\{\frac{7}{5}\right\}$
19. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow$ Range of f is invertible. Find the inverse of f .
20. Let $\mathrm{A}=\mathbf{R}-\{3\}$ and $\mathrm{B}=\mathbf{R}-\{1\}$. Consider the function $f: \mathrm{A} \rightarrow \mathrm{B}$ defined by $\mathrm{f}(\mathrm{x})=\left(\frac{\mathrm{x}-2}{\mathrm{x}-3}\right)$. Show that f is bijective.
21. Consider $f: \mathrm{R}_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that fis invertible with the inverse f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.
22. Prove that $\tan ^{-1} \frac{m}{n}-\tan ^{-1} \frac{m-n}{m+n}=\frac{\pi}{4}$
23. Prove that $\tan ^{-1} 3 / 4+\tan ^{-1} 3 / 5-\tan ^{-1} 8 / 9=\pi / 4$
24. Prove that $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1}\left(\frac{1}{70}\right)+\tan ^{-1}\left(\frac{1}{99}\right)=\pi / 4$
25. If $\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1} c=\pi$ then prove that $a+b+c=a b c$
26. Prove that $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
27. Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \tan ^{-1} \frac{4}{3}$
28. Prove that $\tan ^{-1} 1+\tan ^{-1} 1 / 2+\tan ^{-1} 1 / 3=\pi / 2$
29. Prove that $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
30. Prove that $\tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]=\frac{2 b}{a}$
31. Show that $\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{65}=\pi$
32. Prove that $\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}=\frac{\pi}{2}$
33. Simplify: $\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}\right)$
34. Simplify: $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right)$
35. Simplify : $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)$
36. Simplify a) $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right)$ b) $\tan ^{-1} \frac{\sqrt{1+x^{2}}}{x}$ c) $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)$
37. Solve $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\pi / 4$
38. Solve $\cos ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{x} / 2=\pi / 6$
39. Solve $\tan ^{-1}(x-1)+\tan ^{-1}(x+1)+\tan ^{-1} x=\tan ^{-1} 3 x$ (ii)Solve for $x \tan ^{-1}$
40. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
41. Find the value of $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)=15$
42. Prove that $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1} \frac{1-x}{1+x} \quad$ b) Prove that $\cot ^{-1} \frac{\sqrt{1+\sin x} 4 \sqrt{1-\sin x}}{\sqrt{1+\sin x-\sqrt{1-\sin x}}}=\frac{x}{2}$
43. Prove that an
44. Prove that \tan

45. Prove that $2 \tan ^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2}\right]=\cos ^{-1} \frac{b+a \cos \theta}{a+b \cos \theta}$
46. Prove that $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
47. Prove that $\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x^{2}}=\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}} \quad$ ii) Prove that $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}\right.$
48. If $\cos ^{-1} a+\cos ^{-1} b+\cos ^{1} c=\pi$ then prove that $a^{2}+b^{2}+c^{2}+2 a b c=1$
49. If $\cos ^{-1} \mathrm{x} / \mathrm{a}+\cos ^{-1} \mathrm{y} / \mathrm{b}=\mathrm{A}$ then prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos A=\sin ^{2} A$
50. Prove that $\cot ^{-1}\left(\frac{a b+1}{a-b}\right)+\cot ^{-1}\left(\frac{b c+1}{b-c}\right)+\cot ^{-1}\left(\frac{c a+1}{c-a}\right)=0$
51. Find the value of $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)=15$
52. Find the value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)+\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)$
53. Find the principal value of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
54. Prove that $\sin \left(2 \sin ^{-1} x\right)=2 x \sqrt{1-x^{2}}$.
55. Prove that $\cos ^{-1} x=2 \sin ^{-1} \sqrt{\frac{1-x}{2}}=2 \cos ^{-1} \sqrt{\frac{1+x}{2}}$.
56. Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}$
57. Prove that $\tan ^{-1} \frac{2}{11}+\cot ^{-1} \frac{24}{7}=\tan ^{-1} \frac{1}{2}$
58. Prove that $\cos \left[2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right]+\mathrm{x}=0$.
59. Prove that $\cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$
60. Prove that $\sec ^{-1}\left[\frac{x^{2}+1}{x^{2}-1}\right]+2 \tan ^{-1} \mathrm{x}=\pi$
61. Prove that $\cot ^{-1}\left[\frac{1+x}{1-x}\right]+\tan ^{-1} x=\frac{\pi}{4}$
62. Prove that $\cot ^{-1}[\cos e c x+\cot x]=\frac{x}{2}$
63. Prove that $\cot ^{-1}(\tan x)+\tan ^{-1}(\cot x)=\pi-2 x$
64. Prove that $\sin \left(2 \sin ^{-1} 0.8\right)=0.96$
