<u>Class XII Mathematics Assignment</u> <u>Relations, Functions, Binary operations and Inverse Trigonometric Functions</u>

- 1. Prove that the relation R on the set Z defined by $(x,y) \in R \Leftrightarrow x y$ is divisible by 3 is an equivalence relation.
- 2. Prove that the relation R on the set N X N defined by (a, b) R (c,d) \Leftrightarrow a + d = b + c is an equivalence relation.
- 3. Prove that the relation R on the set N X N defined by $(a, b)R(c,d) \Leftrightarrow ad = bc$ is an equivalence relation.
- Prove that the relation R on the set N X N defined by (a, b)R(c,d) ⇔ ad(b + c) = bc(a + d) is an equivalence relation.
- 5. Check whether the relation R on the set of real numbers defined by $(a,b) \in R \iff 1+ab > 0$ is equivalence relation.

 $\sqrt{y-6}-1$

- 6. Check whether the following functions are bijective if so, find their inverse also
 - a). f: R \rightarrow R defined by f(x) =4x³ +8
 - b). f: R \rightarrow R defined by $f(x) = (x+1)^2 1 x, y \ge -1$
 - c). f: [0,2] \rightarrow :[0,2] defined by f(x) = $\sqrt{4-x^2}$
 - d) f: N \rightarrow N defined by f(x) = $\begin{cases} x+1 & \text{if } x \text{ is odd} \\ x-1 & \text{if } x \text{ is even} \end{cases}$
 - e) $f: R_+ \rightarrow [-5, \infty]$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with
 - f) f : R₊ \rightarrow [4, ∞] given by f(x) = x² + 4 Show that f is invertible with f¹(y) = $\sqrt{y-4}$
 - g) f:R \rightarrow R defined by f(x) = |x| + 5
- 7. If $f(x) = \frac{x-1}{x+1}$ prove that $f(2x) = \frac{3f(x)+1}{f(x)+3}$
- 8. Let f,g : R \rightarrow R defined by f(x) = x² + 3x + 1 and g(x) = 2x 3, find fog and gof
- 9. Given $f(x) = \frac{2x+5}{4x+3}$ if fog (x) = x , then find g
- 10. If $f(x) = \log \frac{1+x}{1-x}$ and $g(x) = \frac{3x+x^3}{1+3x^2}$ then prove that fog(x) = 3f(x)
- 11. Let f,g : R \rightarrow R defined by $f(x) = \sin x$ and $g(x) = x^2$ find fog and gof
- 12. On the set Q^+ of all positive rational numbers define a binary operation * by a * b = ab/2. Show that * is commutative and associative. Also find the identity element, if any for* on Q^+ , Also find the inverse of $a \in Q^+$ if it exists
- 13. Let * be a binary operation on Z defined by a*b = a + b + 1, Check whether * is commutative and associative. Find the identity element if any . find also the inverse element of $a \in Z$
- 14. Let $A = \{1,-1,i,-i\}$ where $i = \sqrt{-1}$. Draw an operation table for the operation 'multiplication'. Is it a binary operation? If so find the identity element and inverse of each element of A if they exist.
- 15. Let *: Q X Q: → Q defined by a*b =a + b ab, Check whether * is commutative and associative. Also find the identity element and inverse of each a in Q if they exist.

- 16. Show that the operations "Union" and "Intersection" of sets defined on the powerset of a nonempty set A is a binary operation. Also prove that these operations are commutative and associative. Also find the identity elements for the operations.
- 17. Let $A = \{a,b,c,d\}$ Give an example for a relation in A which is
 - a. reflexive but neither symmetric nor transitive

b. reflexive and symmetric but not transitive

- 18. $f: R \left\{\frac{7}{5}\right\} \to R \left\{\frac{3}{5}\right\}$ be defined as $f(x) = \frac{3x+4}{5x-7}$ and $g: R \left\{\frac{3}{5}\right\} \to R \left\{\frac{7}{5}\right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$. Show that $g \circ f = I_A$ and $f \circ g = I_B$ where $B = R \left\{\frac{3}{5}\right\}$ and $A = R \left\{\frac{7}{5}\right\}$.
- 19. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to Range$ of f is invertible. Find the inverse of f.
- 20. Let A = **R** {3} and B = **R** {1}. Consider the function $f: A \to B$ defined by $f(\mathbf{x}) = \left(\frac{\mathbf{x}-2}{\mathbf{x}-3}\right)$. Show that *f* is bijective.
- 21. Consider $f : \mathbb{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y 4}$, where \mathbb{R}_+ is the set of all non-negative real numbers.
- 22. Prove that $\tan^{-1} \frac{m}{n} \tan^{-1} \frac{m-n}{m+n} = \frac{\pi}{4}$ 23. Prove that $\tan^{-1} 3/4 + \tan^{-1} 3/5 - \tan^{-1} 8/9 = \pi/4$ 24. Prove that $4\tan^{-1} \frac{1}{5} - \tan^{-1} \left(\frac{1}{70}\right) + \tan^{-1} \left(\frac{1}{99}\right) = \pi/4$ 25. If $\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi$ then prove that a + b + c = abc26. Prove that $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$ 27. Prove that $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \frac{1}{2} \tan^{-1} \frac{4}{3}$ 28. Prove that $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} = \pi/2$ 29. Prove that $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$ 30. Prove that $\tan \left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right] + \tan \left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right] = \frac{2b}{a}$ 31. Show that $\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{65} = \pi$ 32. Prove that $\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}$

33. Simplify:
$$\tan^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)$$

34. Simplify: $\tan^{-1}\left(\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right)$
35. Simplify: $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$
36. Simplify a) $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$ b) $\tan^{-1}\frac{\sqrt{1+x^{2}}}{x}$ c) $\tan^{-1}\left(\frac{3a^{2}x-x^{2}}{a^{2}-3ax^{2}}\right)$
37. Solve $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \pi/4$
38. Solve $\cos^{-1}x + \sin^{-1}x/2 = \pi/6$
39. Solve $\tan^{-1}(x-1) + \tan^{-1}(x+1) + \tan^{-1}x = \tan^{-1}3x$ (ii)Solve for $x \tan\left(\frac{1-x}{1+x}\right) - \frac{1}{2}\tan^{-1}x = 0$ if $x > 0$
40. Solve $\tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{4}$ in Solve 2 $\tan^{-1}(\cos x) = \tan^{-1}(2\cos ex)$
41. Find the value of $\sec^{2}(\tan^{-1}2) + \csc^{2}(\cot^{-1}3) = 15$
42. Prove that $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x}$ b) Prove that $\cot^{-1}\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} = \frac{x}{2}$
43. Prove that $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x}$ b) Prove that $\cot^{-1}\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} = \frac{x}{2}$
44. Prove that $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{4} - \frac{1}{2}\cos^{-1}x$
45. Prove that $2\tan^{-1}\sqrt{\frac{\sqrt{1-x}}{4-b}} \tan\frac{\theta}{2} = \cos^{-1}\frac{b+a\cos\theta}{a+b\cos\theta}$
46. Prove that $\frac{1}{8} - \frac{1}{9} - \frac{1}{3} = \frac{\pi}{4} \sin^{-1}\frac{2\sqrt{2}}{3}$
47. Prove that $\tan^{-1}x + \tan^{-1}\frac{2x}{1-x^{2}} = \tan^{-1}\frac{3x-x^{2}}{1-x^{2}}$ ii) Prove that $\cos[\tan^{-1}[\sin(\cot^{-1}x)]] = \sqrt{\frac{1+x^{2}}{2+x^{2}}}$
48. If $\cos^{1}a + \cos^{1}b + \cos^{1}c = \pi$ then prove that $a^{2} + b^{2} + c^{2} + 2abc = 1$

49. If cos⁻¹ x/a+ cos⁻¹ y/b = A then prove that $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} \cos A = \sin^2 A$

50. Prove that $\cot^{-1}\left(\frac{ab+1}{a-b}\right) + \cot^{-1}\left(\frac{bc+1}{b-c}\right) + \cot^{-1}\left(\frac{ca+1}{c-a}\right) = 0$
51. Find the value of $\sec^2(\tan^{-1} 2) + \cos \sec^2(\cot^{-1} 3) = 15$
52. Find the value of $\sin^{-1}(\sin\frac{2\pi}{3}) + \cos^{-1}(\cos\frac{2\pi}{3})$
53. Find the principal value of $\tan^{-1}(\tan\frac{3\pi}{4})$
54. Prove that $\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$.
55. Prove that $\cos^{-1} x = 2\sin^{-1} \sqrt{\frac{1-x}{2}} = 2\cos^{-1} \sqrt{\frac{1+x}{2}}$.
56. Prove that $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}\frac{3}{5}$
57. Prove that $\tan^{-1}\frac{2}{11} + \cot^{-1}\frac{24}{7} = \tan^{-1}\frac{1}{2}$
58. Prove that $\cos\left[2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right] + x = 0.$
59. Prove that $\cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12}$
60. Prove that $\sec^{-1}\left[\frac{x^2+1}{x^2-1}\right] + 2\tan^{-1}x = \pi$
61. Prove that $\cot^{-1}\left[\frac{1+x}{1-x}\right] + \tan^{-1}x = \frac{\pi}{4}$
62. Prove that $\cot^{-1} \left[\cos ecx + \cot x \right] = \frac{x}{2}$
63. Prove that $\cot^{-1}(\tan x) + \tan^{-1}(\cot x) = \pi - 2x$
64. Prove that $\sin(2\sin^4 0.8) = 0.96$