<u>Class XII</u>

2011 Foreign

- 1. (Set 1) If f: $R \rightarrow R$ is defined by f(x) = 3x + 2, define f[f(x)]. [1 mark]
- 2. (Set 2) Write fog, if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by f(x) = |x| and g(x) = |5x-2|. [1 mark]
- 3. (Set 3) Write fog, if $f: R \to R$ and $g: R \to R$ are given by $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$. [1 mark]
- 4. Consider $f : R_+ \rightarrow [4, \infty]$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse (f¹) of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers. [4 marks]

2011 Delhi

- 5. State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.
- 6. Consider the binary operation * on the set {1, 2, 3, 4, 5} is defined by a * b = min {a, b}. Write the operation table of the operation *.

2010 Foreign

- 7. (Set 1) If 'f' is an invertible function, defined as $f(x) = \frac{3x-4}{5}$, write f⁻¹. [1 mark]
- 8. (Set 2) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by $f(x) = \sin x$ and $g(x) = 5x^2$, find $g \circ f(x)$. [1 mark]
- 9. (Set 3) If $f(x) = 27x^3$ and $g(x) = x^{\frac{1}{3}}$, find $g \circ f(x)$. [1 mark]
- 10. Consider f : $R_+ \rightarrow [-5, \infty]$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) =$

$$\left(\frac{\sqrt{y-6}-1}{3}\right).$$
 [4 marks]

11. OR Let $A = N \times N$ and * be a binary operation on A defined by (a, b) * (c,d) = (a + c, b + d). Show that * is commutative and associative. Also find the identity element for * on A, if any. [4 marks]

2010 AI

- 12. If $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = (3 x^3)^{1/3}$, then find fof(x). [1 mark]
- 13. (Set 1 & 2) Show that the relation S in the set A = $\{x \in Z : 0 \le x \le 12\}$ given by S = {(a, b): a, b \in Z, |a-b| is divisible by 4} is an equivalence relation. Find the set of all elements related to 1. [4 marks]
- 14. (Set 3) Show that the relation S defined on the set $N \times N$ by (a, b) $S(c,d) \Rightarrow a + d = b + c$ is an equivalence relation. [4 marks]

2010 Delhi

- 15. What is the range of the function $f(x) = \frac{|x-1|}{(x-1)}$? [1 mark]
- 16. (Set 1) Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z \text{ and} (a b) \text{ is divisible by 5}\}$. Prove that R is an equivalence relation. [4 marks]
- 17. (Set 2) Let * be a binary operation on Q, defined by $a*b = \frac{3ab}{5}$. Show that * is commutative as well as associative. Also find its identity, if it exists. [4 marks]

18. (Set 3) Show that the relation S in the set R of real numbers, defined as $S = \{(a, b) : a, b \in R \text{ and } a \leq a \leq a \}$

[4 marks]

[4 marks]

[1 mark]

[4 marks]

 b^{3} is neither reflexive, nor symmetric nor transitive.

2010 Comptmnt.

- 19. If the function $f : \mathbb{R} \to \mathbb{R}$, defined by f(x) = 3x 4, is invertible, find f^{-1} . [1 mark]
- 20. Let $f : X \rightarrow Y$ be a function. Define a relation R on X given by $R = \{(a, b) : f(a) = f(b)\}$. Show that R is an equivalence relation on X. [4 marks]

2009 Foreign

- 21. If the binary operation *, defined on Q, is defined as a * b = 2a + b − ab, for all a, b ∈ Q, find the value of 3 * 4.
- 22. Show that the relation R in the set of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither reflexive, nor symmetric nor transitive. [4 marks]

2009 AI

23. Let * be a binary operation on N given by a * b = HCF(a, b), a, b \in N, write the value of 22 * 4.

24. Let
$$f: N \to N$$
 be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$, for all $n \in N$

Find whether the function f is bijective.

2009 Delhi

- 25. If the binary operation *on the set of integers Z, is defined by a * b = a + 3b², then find the value of 2 * 4.[1 mark]
- 26. Prove that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b): |a b| is even}, is an equivalence relation. [4 marks]

2008 Foreign

- 27. Let * be a binary operation, defined by a * b = 3a + 4b 2, find 4 * 5. [1 mark]
- 28. Show that the relation R defined by $R = \{(a, b) : (a b) \text{ is divisible by 3; } a, b \in N \}$ is an equivalence relation. [4 marks]

2008 AI

29. Show that the relation R defined by (a, b) R (c, d) \Leftrightarrow a + d = b + c on the set N X N is an equivalence relation. [4 marks]

2008 Delhi

- 30. If f(x) = x + 7 and g(x) = x 7, $x \in R$, find (fog)(7).
- 31. (i) Is the binary operation *, defined on the set N, given by $a*b = \frac{a+b}{2}$ for all a, b \in N,

commutative?

(ii) Is the above binary operation * associative?