2011 Foreign

1. (Set 1) If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, define $f[f(x)]$.
2. (Set 2) Write fog, if $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ are given by $\mathrm{f}(\mathrm{x})=|x|$ and $\mathrm{g}(\mathrm{x})=|5 x-2|$. [1 mark]
3. (Set 3) Write fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$. [1 mark]
4. Consider $f: R_{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse $\left(f^{-1}\right)$ of f given by $\mathrm{f}^{-1}(\mathrm{y})=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.

2011 Delhi

5. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.
6. Consider the binary operation $*$ on the set $\{1,2,3,4,5\}$ is defined by $a * b=\min \{a, b\}$. Write the operation table of the operation *.

2010 Foreign

7. (Set 1) If ' f ' is an invertible function, defined as $f(x)=\frac{3 x-4}{5}$, write f^{-1}.
8. (Set 2) If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ are given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=5 x^{2}$, find $g \circ f(x)$.[1 mark]
9. (Set 3) If $\mathrm{f}(\mathrm{x})=27 x^{3}$ and $\mathrm{g}(\mathrm{x})=x^{\overline{3}}$, find $g \circ f(x)$.
[1 mark]
10. Consider $\mathrm{f}: R_{+} \rightarrow[-5, \infty]$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=$

$$
\left(\frac{\sqrt{y-6}-1}{3}\right)
$$

11. OR Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and $*$ be a binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Show that $*$ is commutative and associative. Also find the identity element for $*$ on A , if any. [4 marks]

2010 AI

12. If $f: R \rightarrow R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find fof (x).
13. (Set $1 \& 2$) Show that the relation S in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ given by $S=\{(a, b): a, b \in Z$, $|a-b|$ is divisible by 4$\}$ is an equivalence relation. Find the set of all elements related to 1 . [4 marks]
14. (Set 3) Show that the relation S defined on the set $N \times N$ by ($a, b) S(c, d) \Rightarrow a+d=b+c$ is an equivalence relation.

2010 Delhi

15. What is the range of the function $\mathrm{f}(\mathrm{x})=\frac{|x-1|}{(x-1)}$?
16. (Set 1) Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b): a, b \in Z$ and $(\mathrm{a}-\mathrm{b})$ is divisible by 5 . Prove that R is an equivalence relation.
[4 marks]
17. (Set 2) Let * be a binary operation on Q , defined by $\mathrm{a} * \mathrm{~b}=\frac{3 a b}{5}$. Show that $*$ is commutative as well as associative. Also find its identity, if it exists.
18. (Set 3) Show that the relation S in the set R of real numbers, defined as $S=\{(a, b): a, b \in R$ and $a \leq$ $\left.b^{3}\right\}$ is neither reflexive, nor symmetric nor transitive.

2010 Comptmnt.

19. If the function $f: R \rightarrow R$, defined by $f(x)=3 x-4$, is invertible, find f^{-1}.
20. Let $f: X \rightarrow Y$ be a function. Define a relation R on X given by $R=\{(a, b): f(a)=f(b)\}$. Show that R is an equivalence relation on X .

2009 Foreign

21. If the binary operation *, defined on Q, is defined as $a * b=2 a+b-a b$, for $a l l a, b \in Q$, find the value of $3 * 4$.
22. Show that the relation R in the set of real numbers, defined as $R=\left\{(a, b)\right.$: $\left.a \leq b^{2}\right\}$ is neither reflexive, nor symmetric nor transitive.

2009 AI

23. Let $*$ be a binary operation on N given by $a * b=\operatorname{HCF}(a, b), a, b \in N$, write the value of $22 * 4$.
24. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \\ \text { if } n \text { is even }\end{array}\right.$, for all $n \in N$

Find whether the function f is bijective.

2009 Delhi

25. If the binary operation *on the set of integers Z, is defined by a $*=a+3 b^{2}$, then find the value of $2 * 4$.
26. Prove that the relation R in the set $\mathrm{A}=\{1,2,3,4,5\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|a-b|$ is even $\}$, is an equivalence relation.

2008 Foreign

27. Let $*$ be a binary operation, defined by $a * b=3 a+4 b-2$, find $4 * 5$.
28. Show that the relation R defined by $R=\{(a, b):(a-b)$ is divisible by $3 ; a, b \in N$ is an equivalence relation.

2008 AI

29. Show that the relation R defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ on the set $N X N$ is an equivalence relation.

2008 Delhi

30. If $f(x)=x+7$ and $g(x)=x-7, x \in R$, find $(f o g)(7)$.
31. (i) Is the binary operation ${ }^{*}$, defined on the set N , given by $\mathrm{a} * \mathrm{~b}=\frac{a+b}{2}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$, commutative?
(ii) Is the above binary operation * associative?
