THE INDIAN SCHOOL, BAHRAIN

FIRST TERMINAL EXAMINATION, JUNE 2014

STD: XI

SUB: MATHEMATICS

MAX. MARKS: 100

TIME : 3 HOURS

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 26 questions divided into three sections A, B and C.
- 3. Question numbers 1 to 6 are of 1 mark each. Question numbers 7 to 19 are of 4 marks each and Question numbers 20 to 26 are of 6 marks each.
- 4. This paper contains two printed pages.

Section A

- 1. Find the value of $\sin(\frac{-19\pi}{3})$
- 2. Simplify: $i^{10} + i^{11} + i^{12} + i^{13}$.
- 3. Find the principal solution of $\tan\theta = \sqrt{3}$
- 4. Solve: $x^2 2x + \frac{3}{2} = 0$
- 5. Evaluate $\sin 75^{\circ} \cos 15^{\circ} \cos 75^{\circ} \sin 15^{\circ}$.
- 6. Find the multiplicative inverse of 2 2i.

Section B

7. Prove the following by using the principle of mathematical induction for all $n \in N$

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

OR

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$$

8. Prove that $\frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x} = \tan x$

9. Prove the following by using the principle of mathematical induction for all $n \in N$ $1.2 + 2.2^2 + 3.2^3 + ... + n.2^n = (n-1)2^{n+1} + 2$

10. If $x + iy = (u + iv)^3$, then show that $4(u^2 - v^2) = \frac{x}{u} + \frac{y}{v}$

- 11. Prove that $\cot 5x \cot 6x \cot 6x \cot 11x \cot 11x \cot 5x = 1$
- 12. Prove that $\cos^2 x + \cos^2 (x + 120^\circ) + \cos^2 (x 120^\circ) = \frac{3}{2}$

OR

Prove that $\cos 6x = 32\cos^{6} x - 48\cos^{4} x + 18\cos^{2} x - 1$

- 13. Find the square root of -7 24i.
- 14. In triangle ABC, prove that $a(b \cos C c \cos B) = b^2 c^2$.
- 15. Find the general solution of the following equation: $\cos x + \cos 2x + \cos 3x = 0$ OR $2\sin^2 x + 3\cos x = 0$

16. Prove the following by using the principle of mathematical induction for all $n \in N$ 1.2.3 + 2.3.4 + ... + $n(n + 1)(n + 2) = \frac{n(n+1)(n+2)(n+3)}{n(n+1)(n+2)(n+3)}$

17. If
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
, prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

18. Solve the following system of inequalities graphically :

$$5x + 4y \le 20 \text{ and } y \ge 2$$

19. Find $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$, if $z_1 = 2 - i$ and $z_2 = 1 + i$.

OR

Find real numbers x and y if (x - iy)(3 + 5i) is the conjugate of -6 - 24i.

Section C

20. Using a unit circle, derive the identity $\cos (x + y) = \cos x \cos y - \sin x \sin y$.

21. Find
$$\sin\left(\frac{x}{2}\right)$$
, $\cos\left(\frac{x}{2}\right)$ and $\tan\left(\frac{x}{2}\right)$, if $\tan x = \frac{4}{3}$; $\pi < x < \frac{3}{2}\pi$
OR

In triangle ABC, prove that
$$\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$$

22. Prove the following by using the principle of mathematical induction for all $n \in N$ $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$

- 23. Prove the following by using the principle of mathematical induction for all $n \in N$ $3^{2n+2} - 8n - 9$ is divisible by 8.
- 24. Express the following complex number in the polar form. $z = \frac{i+1}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}$

25. Find real θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is i) purely real ii) purely imaginary. OR

If α and β are different complex numbers such that $|\beta| = 1$, then find the value of $\left|\frac{\beta - \alpha}{1 - \overline{\alpha}\beta}\right|$.

26. Solve graphically $x + 2y \le 8$, $2x + y \ge 2$, x - y < 0, $x \ge 0$, and $y \ge 0$.