THE INDIAN SCHOOL
 KINGDOM OF BAHRAIN
 FIRST TERMINAL EXAMINATION - JUNE2009

STD: XI
MAX.MARKS: 100
SUBJECT: MATHEMATICS

TIME: 3HOURS

General Instructions

1. All questions are compulsory
2. The question paper consists of $\mathbf{2 9}$ questions divided in to three sections A, B and C.
3. Question numbers $\mathbf{1}$ to $\mathbf{1 0}$ are of $\mathbf{1}$ mark each, Question numbers $\mathbf{1 1}$ to $\mathbf{2 2}$ are of $\mathbf{4}$ marks each and Question numbers 23 to 29 are of 6 marks each.
4. All the questions in section \mathbf{A} are to be answered in one word, one sentence or as per the exact requirement of the question.

PART A

1. A wheel makes 270 revolutions in one minute. Through how many radians does it turn in 1 second?
2. Check whether the statement $1.3+2.5+3.7+\ldots \ldots \ldots . . n(2 n+1)=n(n+1)$ is true or false
3. Find the value of $\tan 15^{0}$
4. Find the multiplicative inverse of $2-2 i$
5. Solve $x^{2}+x+\frac{1}{\sqrt{2}}=0$
6. Solve $8-3 \mathrm{x}<2$ when x is a natural number.
7. How many three digit even numbers can be formed with the digits $1,2,3,4,5,6,7$
8. Find x if $\frac{1}{9!}+\frac{1}{10!}=\frac{x}{11!}$
9. If ${ }^{n} C_{7}={ }^{n} C_{3}$ Find ${ }^{n} C_{2}$
10. Expand $\left(x^{2}+\frac{2}{x}\right)^{5} x \neq 0$ using binomial theorem

PART B

11. Prove that $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
12. Solve $2 \cos ^{2} x+3 \sin x=0$
13. Prove that $\cos ^{2} x+\cos ^{2}\left(x+120^{\circ}\right)+\cos ^{2}\left(x-120^{\circ}\right)=3 / 2$

OR
If $\tan x=-\frac{4}{3}$ and x in second quadrant, find the values of $\sin x / 2, \cos x / 2$ and $\tan x / 2$
14. Prove using P.M.I that $1.3+2.3^{2}+3.3^{3}+\ldots \ldots \ldots \ldots .$. n. $3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

OR
Show that by Principle of mathematical induction that for any natural number n., $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\ldots \ldots \ldots$
15. If $(x+i y)^{1 / 3}=a+i b$, show that $\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)$
16. Express $\frac{1+2 i}{1-3 i}$ in polar form
17. How many litres of water will have to be added to 1250 litres of 45% acid solution so that the resulting mixture is between 20% and 25%
18. Solve the following system of linear inequations and represent the solution on the number line $\frac{7 x-1}{2}<-3, \frac{3 x+8}{5}+11<0$
19. If ${ }^{5} P_{r}={ }^{6} P_{r-1}$ Find r.
20. How many ways the letters of the word INDEPENDENCE be arranged so that

1) All the vowels are together.
2) First letter is C and last letter is I
21. In an examination a question paper consists of 9 questions divided into two parts. Part A has 5 questions and part B has 4 questions. A student has to attempt 6 questions in all, selecting at least 2 questions from each section. In how many ways can the student select the questions?

OR
How many numbers greater than $10,00,00,000$ can be formed using the digits $0,1,2,2,3,4,1,4,5$
22. Find the value of 102^{5} using binomial theorem

PART C

23. Prove that $\cos (A+B)=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}$
24. Prove that $\frac{\operatorname{Cos} 8 A \cos 5 A-\cos 12 A \cos 9 A}{\sin 8 A \cos 5 A+\cos 12 A \sin 9 A}=\tan 4 \mathrm{~A}$

OR
Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$
25. Prove that $\mathrm{x}^{2 n}-\mathrm{y}^{2 n}$ is divisible by $\mathrm{x}+\mathrm{y}$
26. If α and β are two different complex numbers so that $|\beta|=1$ find $\left|\frac{\beta-\alpha}{1-\alpha^{-} \beta}\right|$
27. Solve the following linear inequalities graphically $3 x-4 y+12 \geq 0 ; \quad 2 x+3 y-12 \geq 0 \quad 2 x-y+2 \geq 0 ; \quad x \leq 4 ; \quad y \geq 2 ; \quad x \geq 0 ; y \geq 0$
28. The coefficient of three consecutive terms in the expansion of $\left(1+a^{n}\right)$ are in the ratio 1:7:42. Find n

OR

Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 .5 .7 \ldots \ldots \ldots .(2 n-1) 2^{n} x^{n}}{n!}$
29. Find the coefficient of x^{5} in the expansion of the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

