Biju Thomas

## THE INDIAN SCHOOL, KINGDOM OF BAHRAIN TERMINAL EXAMINATION – JULY 2010

STD: XII SUBJECT: MATHEMATICS **MARKS: 100** 

TIME: 3 hrs

Please check that this question paper contains 3 printed pages. Please check that this question paper contain 29 questions.

## Section -A (each carry 1 mark)

- 1) Construct a 2×2 matrix,  $A = \begin{bmatrix} a_{ij} \end{bmatrix}$  whose elements are given by  $a_{ij} = \frac{i}{i}$ .
- 2) Find the product of the matrices  $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$
- 3) Define an equivalence relation.
- 4) The total number of binary operation on the set { a,b} are?
- 5) Find the principal value of  $\cos^{-1}\left(\frac{-1}{2}\right)$ .
- 6) The value of  $\sin\left(\frac{\pi}{3} \sin^{-1}\left(\frac{-1}{2}\right)\right)$  is equal to
- 7) Find the unit vector in the direction of the vector  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ .
- 8) Find the value of  $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ .
- 9) Find the direction cosines of a line whose direction ratios are -18, 12, -4.
- 10) Find the intercepts cut off by the plane 2x + y z = 5.

## Section -B (each carry 4 marks)

11) Find the inverse of the matrix by using elementary operations, 
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

If 
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 and I is the identity matrix of order 2,

show that 
$$I + A = (I - A)\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

12) By using the properties of determinants prove that 
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$

$$\begin{vmatrix} x + y + 2z & x & y \\ z & y + z + 2x & y \\ z & x & z + x + 2y \end{vmatrix} = 2(x + y + z)^{3}.$$

14) Prove that 
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in (0, \frac{\pi}{4}).$$

Prove that 
$$\tan^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$$
,  $\frac{-1}{\sqrt{2}} \le x \le 1$ .

15) Show that 
$$\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{16} = \pi$$

16) Show that 
$$\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$$

17) Let 
$$A = N \times N$$
 and \* be the binary operation on A defined by  $(a,b)*(c,d)=(a+c,b+d)$ , verify that \* is commutative and associative . Find the identity element for \* on A if any .

18) Verify that the relation R in the set 
$$A = \{1,2,3,4,5,6\}$$
 as  $R = \{(x,y) : y \text{ is divisible by } x \}$  is reflexive, symmetric and transitive.

Consider 
$$f: R_+ \to [-5, \infty)$$
 given by  $f(x) = 9x^2 + 6x - 5$ . show that f is invertible with  $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$ 

19) Verify that the vectors form the vertices of a right angled triangle 
$$2\hat{i} - \hat{j} + \hat{k}$$
,  $\hat{i} - 3\hat{j} - 5\hat{k}$  and  $3\hat{i} - 4\hat{j} - 4\hat{k}$ .

(or)

Find the area of the triangle with vertices A 
$$(1,1,2)$$
, B $(2,3,5)$  and C  $(1,5,5)$ .

20) Three vectors a,b and c satisfy the condition 
$$\vec{a} + \vec{b} + \vec{c} = 0$$
 evaluate  $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ , if  $|\vec{a}| = 1$ ,  $|\vec{b}| = 4$  and  $|\vec{c}| = 2$ .

21) Probability of solving a specific problem by A and B are 
$$\frac{1}{2}$$
 and  $\frac{1}{3}$  respectively. If both try to solve the problem independently, find the probability that (i) the problem is solved (ii) exactly one of them solves the problem.

maths help 4 u. weebly. com

22) A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of (i) two successes (ii) at least 3 successes.

23) If  $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ , verify that  $A^3 - 6A^2 + 7A + 2I = 0$ .

For the matrix 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
 show that  $A^3 - 6A^2 + 9A - 4I = 0$  and hence

find  $A^{-1}$ 

- 24) Solve the system of equations by matrix method x y + 2z = 7, 3x + 4y 5z = -5 and 2x y + 3z = 12.
- 25) A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
- 26) Find the probability distribution of number of heads in three tosses of a fair coin also find its Expectation .

Bag I contains 3 red and 4 black balls and bag II contains 4 red and 5 black balls . one ball is transferred from Bag I to Bag II and then a ball is drawn from bag II . The ball so drawn is found to be Red is colour . Find the probability that the transferred ball is black.

27) Find the shortest distance between the lines  $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$  and

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} .$$

- 28) Find the equation of the line passing through the point (1,2, -4) and perpendicular to the two lines  $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$  and  $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ .
- 29) Find the image of the point (1,3,4) in the plane x-y+z=5.

mathshelp44. weebly. com