THE INDIAN SCHOOL

KINGDOM OF BAHRAIN

SECOND TERMINAL EXAMINATION - NOVEMBER 2012

STD: XII

MARKS: 100

TIME: 3 HOURS

SUBJET: MATHEMATICS

General Instruction:

- (i) All questions are compulsory.
- (ii) The questions paper consists of 29 questions divided into three section A, B and C. Section A comprises of 10 questions of one marks each, section B comprises of 12 questions of four marks each and section C comprises of 7 questions of six marks each.
- (iii) All questions in section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 4 Questions of four marks each and 2 questions of six mark each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.
- (vi) You can use any logical method to answer the questions.

SECTION - A

(Question numbers 1 to 10 carry 1 mark each)

- 1. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one one, then $g \circ f: A \rightarrow C$ is also one one.
- 2. Find the principal value of $\csc^{-1}(-\sqrt{2})$
- 3. Find the number of all possible matrices of order 3×3 with each entry 0 or 1
- 4. If X, Y, Z, W and P are matrices or order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$ respectively. Also if n = p then find the order of the matrix 7X 5Z.
- 5. Using the suitable property of determinants if a,b,c are in A.P, find the value of

$$\begin{vmatrix} 2y+4 & 5y+7 & 8y+a \\ 3y+5 & 6y+8 & 9y+b \\ 4y+6 & 7y+9 & 10y+c \end{vmatrix}$$

- 6. Find unit vector in the direction of vector $\vec{a} = 2 \hat{i} + 3 \hat{j} + \hat{k}$
- 7. Find the equation of a line parallel to x axis and passing through the origin.
- 8. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$

mathshelp4u. weebly. com

- 9. The total revenue in Rupees received from the sale of x units of a product is given $R(x) = 13x^2 + 26x + 15$. Find the marginal revenue when x = 7.
- 10. A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.

SECTION B

11. Consider $f: \{1,2,3\} \to \{a,b,c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$

OR

Let *be the binary operation on N given by a*b = LCM of a and b. Find

- (i) 5*7,20*16
- (ii) Is * is commutative
- (iii) Is * is associative
- (iv) Find the identity of *in N

12. Prove that
$$\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} = \frac{2b}{a}$$

.

Show that $\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} = \pi$

13. By using properties of determinants.

Show that
$$\begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} = (1 + a^2 + b^2)^3$$

14. Find all points of discontinuity of f, where f is defined by
$$f(x) = \begin{cases} |x| + 3 & \text{if } x \le -3 \\ -2x & \text{if } -3 < x < 3 \\ 6x + 2 & \text{if } x \ge 3 \end{cases}$$

OR

If the functions f(x), defined below is continuous at x = 0, find the value of k

$$f(x) = \begin{cases} \frac{1 - \cos 2x}{2x^2}, & x < 0 \\ k, & x = 0 \\ \frac{x}{|x|}, & x > 0 \end{cases}$$

15. If
$$y = e^{a \cos^{-1} x}$$
, $-1 \le x \le 1$. Show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$

maths help 4u. weebly. com

If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$

16. If
$$\cos y = x \cos(a + y)$$
 with $\cos a \neq \pm 1$. Prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$

OR

If $(x-a)^2 + (y-b)^2 = c^2$, for some c > 0, prove that $\frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$ is a constant independent a and b.

- 17. Verify Mean Value theorem if $f(x) = x^2 4x 3$ in the interval [a, b] where a = 1 and b = 4
- 18. Using differentials, find the approximate value of $(0.0037)^{\frac{1}{2}}$
- 19. Find the equations of the tangent and normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point (x_0, y_0)
- 20. Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 15$.
- 21. Find the shortest distance between the lines $\frac{x+1}{7} = \frac{-y-1}{6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{-5+y}{-2} = \frac{7-z}{-1}$
- 22. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdles is 5/6. What is the probability that he will knock down fear than 2 hurdles.

SECTION-C

- 23. If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ are two square matrices, find AB and using the product of AB, solve the following system of linear equations x y = 3, 2x + 3y + 4z = 17 and y+2z = 7.
- 24. Find the equation of the plane which contains the of intersection of the planes \vec{r} . $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) 4 = 0$, \vec{r} . $(2\hat{\imath} + \hat{\jmath} \hat{k}) + 5 = 0$ and which is perpendicular to the plane \vec{r} . $(5\hat{\imath} + 3\hat{\jmath} 6\hat{k}) + 8 = 0$.

OR

Find the distance of the point (3, 4, 5) from the plane x + y + z = 2 measured parallel to the line 2x = y = z.

25. Find the mean of the Binomial distribution $B(4,\frac{1}{3})$

mathshelp4u. weebly. com

- 26. In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected at random and we take x = 0 if he opposed, and x = 1 if he is in favour. Find E (x) and var (x).
- 27. If $x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$ and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$. Then prove that $\frac{dy}{dx} = -\cot 3t$.
- 28. Differentiate $(x + \frac{1}{x})^x + x^{(1+\frac{1}{x})}$
- 29. For the curve $y = 4x^3 2x^5$, find all the points at which the tangent passes through the origin.

OR

Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$ which is

- a) Parallel to the line 2x y + 9 = 0
- b) Perpendicular to the line 5y 15x = 13

mathshelp 44. weekly. com