FIRST TERMINAL EXAMINATION – JUNE 2012

Subject: Mathematics

Class : XI

Max Marks: 10

Time

e : 3h

Instructions

Section A - Questions from 1 - 10 carries 1 mark each

Section B - Questions from 11 - 22 carries 4 marks each

Section C - Questions 23 - 29 carries 6 marks each

All questions are compulsory however internal choices are given.

This question paper contains 2 printed pages and 29 questions

Section A

X. Find the value of sin(1020°)

2. Find the value of sinx if secx = 13/5 and x lies in the forth quadrant.

3. Convert 120° to radian.

A. Find the length of the arc which subtends an angle of 35° at the centre of a circle with radius 18cm.

8. Find the modulus of 2-4i

6. Evaluate $i^{20} + i^{21} + i^{22} + i^{23}$

7. If x+2i=-7+4yi, find the value of x and y.

8. Find the multiplicative inverse of 1+i.

9. Find the amplitude of 2-2i

10. If 2x + 5 > 4 - x, solve for x

Section B

 λ . Show that tan3x. tan2x . tanx = tan3x - tan2x - tanx

 $\sqrt{2}$. Prove that $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$

12. Solve $\sin x + \sin 3x + \sin 5x = 0$

OR

Evaluate $2\cos^2 x + 3\sin x = 0$

14. In any $\triangle ABC$, prove that $\frac{a^2-c^2}{b^2} = \frac{\sin[A-C]}{\sin[A+C]}$

Prove that $a(b\cos C - \cos B) = b^2 - c^2$

18. Prove that $\cos 4x = 1-8\sin^2 x \cos^2 x$

16. Solve $2x+y \ge 6$, $3x + 4y \le 12$, graphically.

17. For every positive integer n, prove using PMI, that 7ⁿ- 4ⁿ is divisible by 3.

For all $n\ge 1$, prove that $1+3+5+\dots+(2n-1)=n^2$, by the method of PMI.

18. Prove that n(n+1)(n+5) is a multiple of 3

19. Find the square root of the complex number 3+4i.

OR

Convert in to polar form $\frac{1+3i}{1-2i}$

20. Solve $2x^2 + x + 1 = 0$.

21. Find the conjugate of $\frac{1-2i}{2-i}$.

22. If $x+iy = \frac{a-ib}{a+ib}$, show that $x^2 + y^2 = 1$.

Section C -w

23. Derive the relation cos(A-B) = cosAcosB + sinA sinB(01)p.T cos(A+B) = cosAcosB-sinAsinB(01)p.T c

23. Derive the relation
$$\cos(A^2B)^2 \cos A \cos B + \sin A \cos A \cos B + \sin A \cos A \cos B$$

24. In any triangle ABC, prove that
$$\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$$

Find $\sin(X/2)$, $\cos(X/2)$ and $\tan(X/2)$, if $\tan X = (-4/3)$ and X is in the II quadrant.

25. Prove using PMI,
$$1.2 + 2.3 + 3.4 \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

26. Prove using PMI,
$$\frac{1}{2.5} + \frac{1}{5.8} + \cdots + \frac{1}{(3n-0(3n+2))} = \frac{n}{(6n+4)}$$

21. Solve the system of inequalities graphically. $x + 2y \le 10$, $x + y \ge 1$, $x - y \le 0$, $x,y \ge 0$.

28. If $(x+iy)^3 = u+iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$.

28. Convert 1+31 into polar form.

Find real A such that $\frac{3+2i\sin A}{1-2i\sin A}$ is purely real.