1. Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$
(ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and $(1,-3,4)$
(iv) $(2,-1,3)$ and $(-2,1,3)$.
Ans: i) $2 \sqrt{5}$
ii) $\sqrt{43}$
iii) $2 \sqrt{26}$
iv) $2 \sqrt{5}$
2. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
[refer previous worksheet Remark 5]
3. Verify the following:
(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.
[refer previous worksheet Remark 2, 3, 4]
4. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.
[Hint: let the point be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. given points be $\mathrm{A}(1,2,3)$ and $\mathrm{B}(3,2,-1)$. Then $\mathrm{PA}=\mathrm{PB}$] ans: $\mathrm{x}-2 \mathrm{z}=0$
5. Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10 .
[Hint: let the point be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. given points be $\mathrm{A}(4,0,0)$ and $\mathrm{B}(-4,0,0)$. Then $\mathrm{PA}+\mathrm{PB}=10$]
6. Find the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio (i) $2: 3$ internally,
(ii) 2:3 externally.

Ans: i) $(-4 / 5,1 / 5,27 / 5)$ ii) $(-8,17,3)$
7. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR. Ans : $1: 2$
8. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.
[hint: any point on YZ plane is of the form $(0, y, z)$]
ans: 2:3
9. Using section formula, show that the points $A(2,-3,4), B(-1,2,1)$ and $C(0,1 / 3,2)$ are collinear.
[refer Textbook page 275 , eg. 8, ch. 12]
10. Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16,6)$. [hint: points of trisection divides the line segment into three equal parts. So use the ratio $1: 2$ and $2: 1$]

$$
\text { Ans : }(6,-4,-2) \text { and }(8,-10,2)
$$

11. Show that the points $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram $A B C D$, but it is not a rectangle.
[hint: show $\mathrm{AB}=\mathrm{CD}=6, \mathrm{AD}=\mathrm{BC}=\sqrt{43}$ but $\mathrm{AC} \neq \mathrm{BD}$ using distance formula]
12. Find the equation of the set of the points P such that its distances from the points $A(3,4,-5)$ and $B(-2,1,4)$ are equal.
[hint: using distance formula PA and PB and equate it.] ans: $10 x+6 y-18 z-29=0$.
13. The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$, respectively, find the coordinates of the point C.
[hint: use centroid formula. Let the third vertex be $C(p, q, r)$]
ans: $(1,1,2)$
14. Three vertices of a parallelogram $A B C D$ are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$. Find the coordinates of the fourth vertex.

Ans: $(1,-2,8)$
15. Find the lengths of the medians of the triangle with vertices $A(0,0,6), B(0,4,0)$ and $(6,0,0)$.
[hint: first find the midpoints of the three sides of the triangle using the midpoint formula. Median of a triangle joins the vertex of a triangle to the midpoint of the opposite side. Then use the distance formula]

Ans: $7, \sqrt{34} 7$
16. If the origin is the centroid of the triangle $P Q R$ with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.
[hint: use centroid formula]

$$
\text { ans: } a=-2, b=-16 / 3, c=2
$$

17. Find the coordinates of a point on \boldsymbol{y}-axis which are at a distance of $5 \sqrt{2}$ from the point $\mathbf{P}(\mathbf{3}, \mathbf{- 2}, \mathbf{5})$.
[hint: let the point on $y-$ axis be $\mathrm{Q}(0, \mathrm{y}, 0)$. Then find PQ using distance formula and equate it to $5 \sqrt{2}$]

$$
\text { Ans : }(0,2,0) \text { and }(0,-6,0)
$$

18. A point R with x-coordinate 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R.
[hint: let coordinate of $\mathrm{R}=(4, \mathrm{y}, \mathrm{z})$. let R divide PQ in the ratio $\mathrm{k}: 1$. Using section formula, find the coordinate of R and equate its $x-$ coordinate to 4 . Solve to find value of k. then using value of k, find y and $z] \quad$ ans: $(4,-2,6)$
19. If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P^{2}+P^{2}=k^{2}$, where k is a constant.
[hint: let $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$. using distance formula find PA and PB and substitute in the given equation]
Ans: $x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$
20. Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the XZ- plane. Also find the coordinates.
[hint: let the point on XZ - plane be $\mathrm{P}(\mathrm{x}, 0, \mathrm{z})$. let the given points be $\mathrm{A}(4,8,10)$ and $\mathrm{B}(6,10,-8)$. Let P divide AB in the ratio $\mathrm{k}: 1$. Using section formula find coordinates of P and equate the y coordinate to zero.]
Ans : $k=-4 / 5$ (negative sign implies $4: 5$ externally) $P=(-4,0,82)$
