Notes Ch. 4 Determinants

1. Determinant: If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\mathrm{ad}-\mathrm{bc}$ is known as the determinant of A , $\operatorname{denoted} \operatorname{by} \operatorname{det}(\mathrm{A})$ or Δ or $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.
2. Minor: Minor $\left(M_{i j}\right)$ of an element $a_{i j}$ is the determinant obtained by deleting its $i^{\text {th }}$ row and $j^{\text {th }}$ column and it is denoted by M_{ij}.
3. Cofactor: Cofactor $\left(\mathrm{A}_{\mathrm{ij}}\right)$ of an element a_{ij} is calculated by $\mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}}$.
4. Value of determinant of a matrix A is obtained by the sum of products of elements of a row (or a column) with corresponding co-factors. For example $|A|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$.
5. If elements of a row (or column) are multiplied with co-factors of elements of any other row (or column), then their sum is zero. For example, $a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=0$.
6. Adjoint : Adjoint of a square matrix is obtained by interchanging the rows and columns (transpose) of the matrix containing cofactors. It is represented by adjA.
7. The adjoint of a square matrix of order 2 can be obtained by interchanging the principal diagonal elements and changing the sign of elements on the skew diagonal.
8. If $A \& B$ are square matrices of order n, then i) $A(\operatorname{adjA})=|A| I=(\operatorname{adj} A) A \quad$ ii $) \operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$ iii) $\operatorname{adj}\left(\mathrm{A}^{\mathrm{T}}\right)=(\operatorname{adj} \mathrm{A})^{\mathrm{T}} \quad$ iv) $|\operatorname{adj} A|=|A|^{n-1} \quad$ v) $\operatorname{adj}(\operatorname{adj} \mathrm{A})=|A|^{n-2} A$
9. Singular matrix: A square matrix is said to be singular if its determinant is zero $(|A|=0)$. Otherwise its said to be a non singular matrix.
10. A square matrix is invertible iff its non - singular.
11. Inverse of a matrix: If A is a non singular matrix then $\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj} A$
12. If A and B are square matrices of the same order then $|A B|=|A||B|$. The determinant of the product of matrices is equal to product of their respective determinants.
13. If A is a square matrix of order n , then $|k A|=k^{n}|A|$.
14. If value of determinant ' Δ ' becomes zero by substituting $x=\alpha$, then $x-\alpha$ is a factor of ' Δ '.
15. $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$, where A is square matrix of order n.
16. If A is a square matrix of order n, then $|\operatorname{adj} A|=|A|^{n-1}$.
17. If A is an invertible matrix of order 2 , then $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{|A|}$
18. If A and B are non-singular matrices of the same order, then $A B$ and $B A$ are also nonsingular matrices of the same order.
19. If $A B=B A=I$, where A and B are square matrices, then B is called inverse of A and is written as $B=A^{-1}$. Also $B^{-1}=A$. for e.g. If $A B=8 I$ then $A^{-1}=(1 / 8) B$ and $B^{-1}=(1 / 8) A$.
20. Consistentency of a system of equations: A system of equations is consistent or inconsistent according as its solution exists or not.
21. Solving a system of equations by Matrix Method: For a square matrix A in matrix equation $A X=B$
(a) If $|A| \neq 0$, then there exists unique solution. $X=A^{-1} B$
(b) If $|\mathrm{A}|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B} \neq 0$, then there exists no solution.
(c) If $|\mathrm{A}|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B}=0$, then system may or may not be consistent.
