CALCULUS FORMULAE

S. No.	DIFFERENTIATION		INTEGRATION	
1	$\frac{d}{dx}(x^n)$	nx^{n-1}	$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C$
2	$\frac{d}{dx}(ax+b)^n$	$n(ax+b)^{n-1}a$	$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{(n+1)a} + C$
3	$\frac{d}{dx}(k)$	0	$\int odx$	С
4	$\frac{dx}{dx}(ku)$ $\frac{d}{dx}(ku)$ $\frac{d}{dx}(u \pm v)$ $\frac{d}{dx}(uv)$ $\frac{d}{dx}(uv)$	$k\frac{du}{dx} = ku'$	$\int k dx$	kx + C
5	$\frac{d}{dx}(u\pm v)$	$u' \pm v'$		
6	$\frac{d}{dx}(uv)$	u'v + uv'		
7	$\frac{d}{dx}(\frac{u}{v})$	$\frac{u'v - uv'}{v^2}$		
8	$\frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(\cos x)}$	cos x	$\int \cos x dx$	$\sin x + C$
9	$\frac{d}{dx}(\cos x)$	$-\sin x$	$\int \sin x dx$	$-\cos x + C$
10	d	sec ² x	$\int sec^2 x dx$	$\tan x + C$
11	$\frac{\frac{d}{dx}(\tan x)}{\frac{d}{dx}(\cot x)}$	$-\cos ec^2 x$	$\int cosec^2 x dx$	$-\cot x + C$
12	$\frac{d}{dx}(\sec x)$	sec x tan x	$\int \sec x \tan x dx$	$\sec x + C$
13	$\frac{d}{dx}(\operatorname{cosec} x)$	$-\csc x \cot x$	$\int \operatorname{cosec} x \operatorname{cot} x dx$	$-\csc x + C$
14	$\frac{\frac{dx}{dx}}{\frac{d}{dx}(\operatorname{cosec} x)}$ $\frac{\frac{d}{dx}(\sin^{-1} x)}{\frac{d}{dx}(\sin^{-1} x)}$	$ \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{-1}{\sqrt{1-x^2}}} $ $ \frac{1}{\frac{1}{1+x^2}} $ $ -1 $	$\int \frac{1}{\sqrt{1-x^2}} dx$	$\sin^{-1}x + C$
15	$\frac{d}{dx}(\cos^{-1}x)$	$\frac{-1}{\sqrt{1-x^2}}$		
16	$\frac{d}{dx}(\tan^{-1}x)$	$\frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx$	$\tan^{-1}x + C$
17	$\frac{d}{dx}(\cot^{-1}x)$	$\frac{-1}{1+x^2}$		
18	$\frac{d}{dx}(\sec^{-1}x)$	$ \frac{1+x^2}{1} $ $ \frac{1}{x\sqrt{x^2-1}} $ $ -1 $	$\int \frac{1}{x\sqrt{x^2 - 1}} dx$	$\sec^{-1} x + C$
19	$\frac{\frac{d}{dx}(\cot^{-1}x)}{\frac{d}{dx}(\sec^{-1}x)}$ $\frac{\frac{d}{dx}(\sec^{-1}x)}{\frac{d}{dx}(\csc^{-1}x)}$ $\frac{d}{dx}(\csc^{-1}x)$	$\frac{-1}{x\sqrt{x^2-1}}$	1	
20	$\frac{d}{dx}(e^x)$	<i>e^x</i>	$\int e^x dx$	$e^x + C$
21	$\frac{d}{dx}(\log_a x)$	$\frac{1}{x}\log_e a$	$\int \frac{1}{ax+b} dx$	$\frac{\log ax+b }{a} + C$
22	$\frac{d}{dx}(\log_e x)$	$\frac{\frac{1}{x}\log_e a}{\frac{1}{x}}$	$\frac{\int \frac{1}{ax+b} dx}{\int \frac{1}{x} dx}$	$\log x + C$
23	$\frac{\frac{d}{dx}(\log_e x)}{\frac{d}{dx}(a^x)}$	$a^x \log a, a > 0$	$\int a^x dx$	$\frac{a^x}{\log a} + C$
24	$\frac{d}{dx}(u^v)$	$u^{v}\left[\frac{v}{u}\frac{du}{dx} + \log u\frac{dv}{dx}\right]$		
25	Chain rule	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$		
26	$\frac{d}{dx}(u^n)$	$\frac{du}{nu^{n-1}}\frac{du}{dx}$		

a, b , C and k are constants; x, y, z, u & v are variables

LIST OF SUBSTITUTIONS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS:

- 1, If f(x) involves $\sqrt{a^2 x^2}$ put x = a sin θ (or a cos θ)
- 2. If f(x) involves $\sqrt{a^2 + x^2}$ put x = a tan θ (or a cot θ)
- 3. If f(x) involves $\sqrt{x^2 a^2}$ put x = a sec θ (or a cosec θ)
- 4. If f(x) involves both $\sqrt{a^2 x^2}$ and $\sqrt{a^2 + x^2}$ put x² = a² cos20
- 5. If f(x) involves both $\sqrt{a x}$ and $\sqrt{a + x}$ put x = a cos2 θ