1. Find the number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{20}$.
2. Find the coefficient of x^{10} in the binomial expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}$, where $\mathrm{x} \neq 0$.
3. Find coefficient of $\mathrm{x}^{9} \mathrm{y}^{-3}$ in the expansion of $\left[\frac{2 x^{2}}{y}+\frac{y}{3 x}\right]^{12}$.
4. Prove that there is no term involving x^{6} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}$, where $\mathrm{x} \neq 0$.
5. Find $11^{\text {th }}$ term from end in expansion of $\left[2 x-\frac{1}{x^{2}}\right]^{25}$.
6. Find the middle terms in the expansion of $\left[3 x-\frac{x^{3}}{6}\right]^{7}$.
7. Find the middle term in expansion of: i) $\left[\frac{2 x^{2}}{3}-\frac{3}{2 x}\right]^{12} \quad$ ii) $\left[2 x-\frac{x^{2}}{4}\right]^{9}$.
8. Which number is larger: $(1.2)^{4000}$ or 800 ?
9. Evaluate the following: $[2+\sqrt{3}]^{7}-[2-\sqrt{3}]^{7}$.
10. Show that $9^{n+1}-8 n-9$ is divisible by 64 , where n is a positive integer.
11. Find the term independent of x in the expansion of $\left[\sqrt[3]{x}+\frac{1}{2 \cdot \sqrt[3]{x}}\right]^{18}, \mathrm{x}>0$.
12. Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.
13. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of

$$
\begin{equation*}
\left[\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right]^{18} \text { is } \sqrt{6}: 1 \tag{4}
\end{equation*}
$$

14. If x and y are distinct integers, prove that $\mathrm{x}-\mathrm{y}$ is a factor of $\mathrm{x}^{\mathrm{n}}-\mathrm{y}^{\mathrm{n}}$, whenever n is a positive integer.
15. Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 .5 \ldots \ldots .(2 n-1)}{n!} 2^{n} x^{n}$.
16. The $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms in the expansion of $(x+a)^{\text {n }}$ are respectively 84,280 and 560 . Find the values of x, a and n.
17. If three successive coefficients in the expansion of $(1+x)^{\mathrm{n}}$ are 220,495 and 792 , find n.
18. If the coefficient of $\mathrm{a}^{\mathrm{r}-1}, \mathrm{a}^{\mathrm{r}}$ and $\mathrm{a}^{\mathrm{r}+1}$ in the expansion of $(1+\mathrm{a})^{\mathrm{n}}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$.
