- 1. Find the number of terms in the expansion of $(1 + 2x + x^2)^{20}$. [1]
- 2. Find the coefficient of x¹⁰ in the binomial expansion of $\left(2x^2 \frac{3}{x}\right)^{11}$, where x $\neq 0$. [1]
- 3. Find coefficient of x⁹y⁻³ in the expansion of $\left[\frac{2x^2}{y} + \frac{y}{3x}\right]^{1/2}$. [1]

4. Prove that there is no term involving x⁶ in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$, where $x \neq 0$. [1]

- 5. Find 11th term from end in expansion of $\left[2x \frac{1}{x^2}\right]^{25}$. [1]
- 6. Find the middle terms in the expansion of $\left[3x \frac{x^3}{6}\right]^{\prime}$. [1]
- 7. Find the middle term in expansion of: i) $\left[\frac{2x^2}{3} \frac{3}{2x}\right]^{12}$ ii) $\left[2x \frac{x^2}{4}\right]^9$. [2]
- 8. Which number is larger: $(1.2)^{4000}$ or 800? [1]
- 9. Evaluate the following: $\left[2+\sqrt{3}\right]^7 \left[2-\sqrt{3}\right]^7$. [4]
- **10.** Show that $9^{n+1} 8n 9$ is divisible by 64, where n is a positive integer. [4]
- 11. Find the term independent of x in the expansion of $\left[\sqrt[3]{x} + \frac{1}{2 \cdot \sqrt[3]{x}}\right]^{18}$, x > 0. [4]
- **12.** Find the coefficient of x^5 in the product $(1 + 2x)^6(1 x)^7$ using binomial theorem. [4]
- 13. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left[\frac{4}{\sqrt{2}} + \frac{1}{\frac{4}{\sqrt{3}}}\right]^{18} \text{ is } \sqrt{6} : 1.$ [4]
- 14. If x and y are distinct integers, prove that x y is a factor of $x^n y^n$, whenever n is a positive integer. [4]
- **15.** Show that the middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} 2^n x^n$. [4]
- 16. The 3^{rd} , 4^{th} and 5^{th} terms in the expansion of $(x + a)^n$ are respectively 84, 280 and 560. Find the values of x, a and n. [6]
- **17.** If three successive coefficients in the expansion of $(1 + x)^n$ are 220, 495 and 792, find *n*. [6]
- 18. If the coefficient of a^{r-1} , a^r and a^{r+1} in the expansion of $(1 + a)^n$ are in arithmetic progression, prove that $n^2 n(4r + 1) + 4r^2 2 = 0$. [6]