Class XI Chapter 4 - Principle of Mathematical Induction Maths

Exercise 4.1
Question 1:
Prove the following by using the principle of mathematical induction for all n € N:

()

2

1 +3+3 +..+3"" =

Answer

Let the given statement be P(n), i.e.,

P(n): 1+3+3%+.+3"1= 2

Forn = 1, we have

{3'—I}:E:E:1

P(1): 1= 2 2 2 , Which is true.

Let P(k) be true for some positive integer k, i.e.,

1+3+3 +.._+3"" =

(i)

We shall now prove that P(k + 1) is true.
Consider
1+ 3+ 32+ ...+ 3t 4300t

=(1+4+3+3%+...+ 3 4 3¥

= +3 [L:F.ing_ {i_]]
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:

'n{n+ l}\':

1-‘+2-‘—3-'+...—n-"=f
2 )

h
Answer

Let the given statement be P(n), i.e.,
'n{n + l}\':

P+ 3+ +0 =[
2 )

P(n): -

Forn = 1, we have

CEGES

P(1):13=1=" “ 4 , which is true.
Let P(k) be true for some positive integer k, i.e.,
_ C(k(k+D)Y _
l"+2‘+3"+....vk‘:[gw (1)
L 2 J
We shall now prove that P(k + 1) is true.

Consider
134+224+33+ .+ + (k+1)3
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

[@J +(k+1) [Using (i)]

K (k+1) ;
=T+(.ﬁ+l]

K (k+1) +4(k+1)
- 4

(k+1)" {&7 +4(k+1)]
- 4

(k+1) [k + 4k +4)

4
(k+1) (k+2)
I

(k+1) (k+1+1)

4
(k) (k+1+1) Y

=P +22+33+ .+ +(k+1)2 2

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:

I+ ! - ! +...+ | = 21
(1+2) (1+2+3) (1+2+43+.n) (n+1)
Answer
Let the given statement be P(n), i.e.,
| 1 1 - 1 _ 2n
P(n): 1+2 1+2+3 1+2+3+.n n+l

Forn = 1, we have
2.1 2

= = ]

P(1): 1 =1+1 2 which is true.

Let P(k) be true for some positive integer k, i.e.,
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Maths

I 1

1 1 2k

+ + ..+ + .t =
1+2 1+2+3 1+2+34+..+&  k+1

o A1)

We shall now prove that P(k + 1) is true.

Consider

1+I

I l

+ +...+ +
1+2 1+2+3 1+2+34+ . +k 1+2+43+ +k+(k+1)

=(I+ : + : +.o.+ : ]+ I
1+2 1+2+43 1+2+3+. k) 14243+ +k+(k+1)

2k 1 N
= U
k+|+l+2+3+...+k+[k+1] [Using (0]

- 1
_ 2 + I I+2+Pi+...+ﬁr:Jljli‘”+ )
k+1 {[ﬁr+l][k+l+l]] 2

2
",

_ 2%k 2

(k+1) (k+1){k+2)
e

(k+1)L k42

Question 4:

Prove the following by using the principle of mathematical induction for all n € N: 1.2.3

n(n+1)(n+2)(n+3)

+234+ .. +nn+1)(n+2)= 4

Answer

Let the given statement be P(n), i.e.,

n(n+1)(n+2)(n+3)

P(n): 1.2.3+234+ ..+n(n+1)(n+2)= 4

Forn = 1, we have

(1+1)(1+2)(143) _1.23.4

P(1): 1.2.3=6 = 4 4 , which is true.

Let P(k) be true for some positive integer k, i.e.,

:k[k+l}{k+2]{k +3)

1.23+234+ ..+ k(k+ 1) (k+2) 4

. (i)
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

We shall now prove that P(k + 1) is true.

Consider

1.23+234+ .+ k(k+1)(k+2)+(k+1)(k+2)(k+3)
={1.234+234+ .. +kk+1)(k+2)}+(k+1)(k+2)(k+3)

::“k‘uugznk*ﬂ+{»+uu+zﬂﬁ+n [Using (i)]

i

~ (k+1)(k +2)(»&+3)\%+|]

(k1) (k+2)(k+3)(k+4)

4
(A+1)(k+1+T)(A+142)(k+1+3)
4

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:

(2rn—1)3""+3
4

13423 +33 +...+n3" =

Answer

Let the given statement be P(n), i.e.,
3 -1

> 2n—1)3"+3
1.3+2.3 +3.3 +...+n3 :—{ }
P(n) : 4

Forn = 1, we have

C(20-1)3%43 3743 12

= —=3
P(1): 1.3 =3 4 4 4 , which is true.

Let P(k) be true for some positive integer k, i.e.,

) 2 _ £l 3
13423 435 +rky o34 - (i)
4

We shall now prove that P(k + 1) is true.
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

Consider
1.3 + 2.32 + 3.3 + ... 4+ k3*+ (k + 1) 3¢*1
=(1.342.32+ 3.3+ .+ k3 + (k + 1) 31

AL b+l
(2 Q3 3 ke)3 [Using (i)]
_(26-1)3" 43+ 4(k+1)3"
- 4
32k —1+4(k+1)}+3
- 4

36k +31+3

33 {2k 41} +3

4

3 k4143

- 4
Cf2(k+1)-13" 3

4
Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural
numbers i.e., n.

Question 6:

Prove the following by using the principle of mathematical induction for all n € N:

1)(n+2
12+2&+34+M+H{H+U={”DH-H”+ q

3

Answer

Let the given statement be P(n), i.e.,

)(n+2
11+25+34+M+H{H+U=[”bH-¥”+ q

P(n):

Forn = 1, we have

I{1+1)(1+2) 1.2.3

1.2=2= = =2
P(1): 3 3 , Which is true.
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Let P(k) be true for some positive integer k, i.e.,

12423434+ . +k(k+1)= F{k* I}{h!}} e A1)

-
A

We shall now prove that P(k + 1) is true.

Consider

1.2+23+34+ .. +k(k+1)+(k+1).(k+2)
=[1.2+23+34+ .. +k(k+1)]+(k+1)(k+2)
Ck(k+1)(k+2)

-

+{k+1)(k+2) [Using (i)]
Fy B

= (k+1)(k+2) %r]:

(k+1)(k+2)(k+3)

(k+1]{ﬂ1v|}[;ﬁl+z}
3

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:
n(4n’ +6n-1)

1.3+43.5+5.7+...+(2n—-1)(2n+1) = 3

Answer

Let the given statement be P(n), i.e.,

nldn’ +6n—1
1.3+43.5+5.7+...+(2n—-1)(2n+1) = (‘ )
P(n): 3
Forn = 1, we have
. H4r+61-1) 446-1 9
P[I]:]..J=_"l= = - = —= 3
3 3 3 , which is true.

Let P(k) be true for some positive integer k, i.e.,
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o k(4k +6k—1) |
L3+354+5. 7+ .+ (2k-1)(2k+1)= - Y
3

We shall now prove that P(k + 1) is true.
Consider
(1.3+35+57+..+R2k-1)Rk+1)+{2(k+1)-1¥{2(k+1)+ 1}

k(4k* +6k -1
=[ ; }+[2.{-+2-I}{2k+2+lj [Using (i)]

k(47 +0k-1)

+(2k+1)(2k +3)

. J"'['r'”‘_;J:w"'_]]'Jr(m;-usm:%]
2

k(4" +6k 1)+ 3( 45" +8k +3)

)
2

A Ok -k +12k7 424649

-
. J

4k +18K"+23k+9
) 3

4+ 14ET + 9k + 407 + 146 +9
) 3

k(45 +14k+9)+ 1(4k° +14k+9)
) 3
(A1) (AT + 148 49)

3

(k+1){4k" +8k+4+6k+6-1|

(k +|}{4(k: +l;k +1)+6(k +|]—I}I
) 3
(k+1){4(k+1) +6(k+1)-1]

3
Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

Prove the following by using the principle of mathematical induction for alln e N: 1.2 +
2.22+3.2°+ .. +n2"=(n-1)2"t + 2

Answer

Let the given statement be P(n), i.e.,

P(n): 1.2 +2.2°+3.2°+...+n2"=(n-1) 2"t + 2

Forn = 1, we have

P(1):1.2=2=(1-1)2"*"+2 =0+ 2 = 2, which is true.
Let P(k) be true for some positive integer k, i.e.,

1.2+ 2224+ 3.224+ .+ k2X=(k-1) 2"t + 2 . (i)

We shall now prove that P(k + 1) is true.

Consider

+2:3+121h“+hf}+{k+u~T'
(A=1)2""+2+(k+1)2"

2 (k1) +(k+1)}+2

22k +2

= k25 42

={(k+1)—-1}2""" 42

||
[

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:
1 1 1 1 1
Pt -t — -
2 4 8 2 2
Answer

Let the given statement be P(n), i.e.,

p(n): 2 4 8 2 2"
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Class XI Chapter 4 - Principle of Mathematical Induction Maths

Forn = 1, we have

1
P(1): 2 2 2 , Which is true.

Let P(k) be true for some positive integer k, i.e.,

—d—+—=+, +t—=1- o (i
2 4 8 2! 2! W
We shall now prove that P(k + 1) is true.
Consider

1 1 1 ) l

s b SR S +_*J+ "

V2 4 8 2 2"

1 1 . .
Z[I_-}TJJ’ S [Using (i)]
=I—L+ !

20 22

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:

] ] 1 i

] —_—

25 58 811 7 (B3n-1)(3n+2) (6n+4)

Answer
Let the given statement be P(n), i.e.,
] ] ] 1 1

+ + +..T
25 58 811 [31?—1}{33?+2} (ﬁn+4}

P(n):

Forn = 1, we have
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Maths

1

P(1)=—=—

I I I

25 10 6.1+4 10", which is true.

Let P(k) be true for some positive integer k, i.e.,

I | | k .

_— +...+ = . (1)

25 58 811 (3k-1)(3k+2) 6k+4

We shall now prove that P(k + 1) is true.

Consider

L1 [ . | N |

25 58 811 (Bk=1)(3k +2) {3(k+1)=1}{3(k+1)+2|
k 1

“6kt4 (k+3-1)(3k+3+2)

k

[Using (i)]

T6k+4 (3k+2)(3k+9)

k

- -
2(3k +2)
| (k

(3k+2)(3k +5)

1
= 1
(3k+2)\ 2 3£'+5]
| [ k(3k+5)+2

™
1

(3k+2)

1 (3K +5k+2

2(3k +5) J

"

T (Bk+2)| 2(3k+59)

A

1 [(3k+2)(k+1)

T (Bk+2)
_ (k+1)
6k +10

o (k+T)
C6(k+1)+4

"
2(3k+5) J

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e.,

n.
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Chapter 4 - Principle of Mathematical Induction Maths

Class XI
Question 11:
Prove the following by using the principle of mathematical induction for alln e N
I I I I n(n+3)
+ + +...+ =
1.23 234 345 n(n+1)(n+2) 4(n+1)(n+2)

Answer

Let the given statement be P(n), i.e.,
| IJ‘{H+3}

et n(n+1)(n+2) ) 4(n+1)(n+2)

I I
+ +
3 234 345

ok | =

P(n): L.

Forn = 1, we have
1-(1+3 .

p(1): - U3 14

1-2-3 4{I+I}{1+2] 4.2.3 1-

Let P(k) be true for some positive integer k, i.e.,
kl(k+3

L ] = (k+3) -~ A1)

h(k+1)(k+2) 4(k+1)(k+2)

-

"7, which is true.

[ | =

We shall now prove that P(k + 1) is true.

Consider
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! ! ! !
23 234 345 +k{ﬁc+I]{k+2J+{k+1]{ﬁc+2]{k+3}
 k(k+3) | o
Tk (k+2) (k) (kr2)(k+3) [Using ()]
1 [k(k+3) 1|
.{+l{.~’1+2}1 4 .»{-+3f

k(ﬂ +m+9)+4
4{ﬂ+'r

4(k+3)
K +20 +k+4k + 8k +4 ]
4(k+3) [
k(K 2k +1)+4(k 24 +1) |
T £+2}l 4(k+3) ‘

! {k{k+l}:+4[ﬁr+l]:]

T (k+1)(k+2) 4(k+3)

l
[
W
[ £ +6k" +9k+4
3 |
|
|
[ &(

(k1) (k+4)

4k +1)(k+2)(k +3)
_ (k+1){(k+1)+3}
H(k+1)+ 1 {(k+1)+2]

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural
numbers i.e., n.
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Question 12:

Prove the following by using the principle of mathematical induction for all n € N:

n{:r"—l}

r—1

a+ar+ar-+...+ar"' =

Answer

Let the given statement be P(n), i.e.,

| u{r“ 1)

P(n):a+ar+ar’ +..+ar' = ]
I'-_

Forn = 1, we have

u(r" —I)

P{I]:a:—:a
(r=1) , which is true.

Let P(k) be true for some positive integer k, i.e.,

JL_I:fa'{a'““'—lll

a+ar+ar 4 ... + | . (1)
r—
We shall now prove that P(k + 1) is true.
Consider
{a+ ar+ar’ + ... +ar' '}+.cu'["'_']_'
u(f" —]} )
=—tar Using (i
— | Using(i) |

rr[x“ —]}+ ar' (r-1)

=1
- u(r‘ —]}+frr"' —ar'
r—1

ar' —a+ar* —ar'

=1
K+

Thus, P(k + 1) is true whenever P(k) is true.
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Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Question 13:

Prove the following by using the principle of mathematical induction for all n € N:
'

3 50 7 2n+1 2

| 1+—][I+—J(l+—].,. l+( - ) =(n+1)

Lo 4, 9 H

Answer

Let the given statement be P(n), i.e.,

P(n): ]+‘—:][I+§ (I +gj,,{l+ﬁ—jl]]={n+ljz

Forn = 1, we have
P[I]:[1+%] =4=(1+1)" =27 = 4, which is true.

Let P(k) be true for some positive integer k, i.e.,

[l+%J[I+§](I+%]...[I+(Eij])]:{k+l): - (1)

We shall now prove that P(k + 1) is true.

Consider

e B

= (k+1)" |+2ii%l}}f'] [ Using(1) ]
[(k+1) +2(k+1)+1

_ (k+1)

(k+1) +2(k+1)+1

:{{k+1}+l]:

Thus, P(k + 1) is true whenever P(k) is true.

={.&+I}J
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Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N:

|::1+H[|+;f1-—1{ i] (n+1)

y AN
Answer

Let the given statement be P(n), i.e.,
A DT IR TE 11
P(n): 1+—] 1+—= | 1+= ...[I+— =|(n+l
LR G CERCREY
Forn = 1, we have
_ 1
P[I]:(HTJ:Z:{HI]

Let P(k) be true for some positive integer k, i.e.,

O R

We shall now prove that P(k + 1) is true.
Consider

_Ll—ij(H;][H;j[Hi MHR]* 1]
={A—+I}[I+ A—Ll] [ Using (1)]

_H_I_l}[{"};’ :}I‘;l]

, Which is true.

=(k+1)+1
Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.
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Question 15:

Prove the following by using the principle of mathematical induction for all n € N:

n(2n—1)(2n+1)

P+3+5 +..+(2n-1) =

Answer

Let the given statement be P(n), i.e.,

n(2n=1)(2n+1)
3

P(r?}: 1 +3°+5° +,,,+{2ﬂ—|]j =

Form=1. we have
H2.0-1)(2.1+1) 113

-
2 2

P(I)=1"=1= =1, which is true.

Let P(k) be true for some positive integer k, i.e.,
s s : K(2k=1)(2k +1
P(k)=1*+3 45 1+ (2k—1) = X! ;( +1)

We shall now prove that P(k + 1) is true.
Consider
[Iz +3 45 (2 I]:} +{2(k+1)- I}:

_k(2k=1)(2k +1)

+(2k+2-1) [ Using (1]

)
3
'; k)| akary
)

_k(2k-1 (2k+1)+3(2k+1)

»
2

(2k+ 1)k (2k-1)+3(2k +1)]
- 3
:{2k+|}{2k:—ﬂ-+5k+3}

-
2
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_{2&-—1}121{ +5k+1}

3
(2K +1){2K +2k +3k +3|
3
(k1) {2k (ke +1) 43 (k1))
) 3
C(2k+1)(k+1)(2k +3)
) 3
(ke {2k )1 {2(k 1)+ 1]

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Question 16:
Prove the following by using the principle of mathematical induction for all n € N:

1 ] | 1 "
—+— +.un =
14 47 710 " (3n-2)(3n+1) (3n+1)

Answer

Let the given statement be P(n), i.e.,

P(n): _*L I N I _n
14 47 700 " (3n-2)(3n+1)  (3n+1)

For n=1. we have
1 1 | 1 C
P(1)=—=——=—=—, which is true.
1.4 31+1 4 14
Let P(k) be true for some positive integer k, i.e.,
1 | | 1 k
}__ o +...+ = (IJ
14 47 7.10 (3k=2)(3k+1) 3k+1
We shall now prove that P(k + 1) is true.
Consider
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LIV S !

1 4 47 710 (3&—2}{3&+|J Bk+1)=2H3(k+1)+1]
I _

T3kl (ke 1)(3k+4) [Usine (1)

{3;;+| {“{3“4}
L m+4}+|}

T (3k+1) )| (3k+4

1 Jaman}
T(Bke1)| (3k4

1 [k eskrke]
(Gk+1)|  (3k+4) |

C (3k+1)(k+1)

(3 +1)(3k +4)

- (k+1)

3(k+1)+1

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Question 17:
Prove the following by using the principle of mathematical induction for all n € N:
1 1 1 1 ]

—t—t—F..t =
3.5 57 7.9 7 (2n+1)(20+3)  3(2n+3)

Answer

Let the given statement be P(n), i.e.,

P(n): ! +L+L— + I -
3.5 57 79 7 (2n+1)(2r+3) 3(2n+3)

Forn = 1, we have
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Maths

1 1 1

35 3(2.1+3) 35

P(1):

, which is true.

Let P(k) be true for some positive integer k, i.e.,
1 1 1 I

P(k): —+——+——+..+ = - Al

( 35 57 79 (2k+1)(2k+3)  3(2k+3) )

We shall now prove that P(k + 1) is true.

Consider

[ | 1
+ + +..+ +
35 57 79 {2&+]]{2k+3}] (2(k+1)+1}{2(k+1)+3)

T3(2k+3)  (2k+3)(2k+5) [Using (1)]

k
C(2k+3)[ 3 (2k+3)
] k(2k+
C(2k+3)| 3(2k+5

1 [ +sk+3
(2k+3)| 3(2k+5)

1 [ 2K 42K+ 3k+3

T (2k+3)[  3(2k+5)
1 [ 2k(k+1)+3(k+1)
C(2k+3)|  3(2k+5)
(ﬁ-+|](2+’c+3}

3(2k +3)(2k +5)

(k+1)
“3{2(k+1)+3)

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Question 18:
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Prove the following by using the principle of mathematical induction for all n € N:
1 2
1+2+43+...+n< g[2r1r+ 1)

Answer

Let the given statement be P(n), i.e.,

=]

P{H}:l+2+3+...+H{%{2H+1}

| 2
l<—(2.1+41) =
It can be noted that P(n) is true for n = 1 since 8

o0 |

Let P(k) be true for some positive integer k, i.e.,
1 )
1+2+...+Ir-::8{2k+1}' (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider

(14244 k) + (k4 1)-::;{2!: 1) 4 (k+1) [ Using(1)]
] . - .

{8|[3k+]] +E{k+]}}

< LMk s k14 8k +8)
gl J

TE 1
{31” +12k+9}

<L (k+1)+1}’

-2

1 s

(1424344 k) +(k+1)<—(2k+1) +(k+1)

Hence, B

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.
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Prove the following by using the principle of mathematical induction for alln e N: n (n +
1) (n + 5) is a multiple of 3.
Answer
Let the given statement be P(n), i.e.,
P(n): n (n + 1) (n + 5), which is a multiple of 3.
It can be noted that P(n) is true forn = 1 since1 (1 + 1) (1 + 5) = 12, whichis a
multiple of 3.
Let P(k) be true for some positive integer k, i.e.,
k (k + 1) (k + 5) is a multiple of 3.
+k(k+1)(k+5)=3m,wheremeN..(1)
We shall now prove that P(k + 1) is true whenever P(k) is true.
Consider
(k+1)f(k+1)+1}{(k+1)+5]
=(k+1)(k+2)§(k+5)+1}
=(k+1)(k+2)(k+5)+(k+1)(k+2)
=Lk (k+1)(k+5)+2(k+1)(k+5)}+(k+1)(k+2)
=3m+(k+1)f2(k+5)+(k+2)]
= m+{a +IM 2k +10+k +2}
1+ k+1)(3k+12)
14+ 3(k+1)(k+4)
1m+{.ﬂ +1)(k+4)} =3xg. where g = Fm+{_.ﬂf +1)( % +4]|} is some natural number
Therefore, [k+l}{[ﬁ + l]+11{[ﬁ. + I]+ amultiple of 3

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N: 10" !
+ 1 is divisible by 11.
Answer

Let the given statement be P(n), i.e.,
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P(n): 10"~ + 1 is divisible by 11.

It can be observed that P(n) is true for n = 1 since P(1) = 10> "'+ 1 = 11, which is
divisible by 11.

Let P(k) be true for some positive integer k, i.e.,

10%*~1 + 1 is divisible by 11.

~10%"'4+1 =11m, whereme N ... (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider

107 4

=107 41

=107 41

=107 (107" +1-1)+1

=107 (10" +1)=10 +1
=10%11m—100+1 [ Using (1) ]
=100 1 Lm—99

= 11(100m -9)

=11r, where r =(100m—9) is some natural number
Therefore, 10" +1 is divisible by 11.

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N: x*" -
y?" is divisible by x + y.

Answer

Let the given statement be P(n), i.e.,

P(n): x*" - y*" is divisible by x + y.

It can be observed that P(n) is true forn = 1.

This is so because x> *1 — y?*1 = x> — y? = (x + y) (x - y) is divisible by (x + y).

Let P(k) be true for some positive integer k, i.e.,
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x*¢ - y*is divisible by x + y.

X -y =m (x +y), whereme N ... (1)
We shall now prove that P(k + 1) is true whenever P(k) is true.
Consider

TR O
=x"x -y .y
=x (.\'J -yt 4y }—J-'“ v

= {m{I+_i,]+_1-3*‘l__1.-“ ot [Using {l}:|

= m(.r+ _1-'}.".': + _n-':"' xt— ¥ -_1':

=+ -

=m(x+yp)x’+ )y~ [1' _1-*‘}
=m(x+y)x+ " (x+ ) (x-»)
=(x+y){mx’ + ™ (x—y)}. which is a factor of (x+ ).

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N: 32" *2
- 8n - 9 is divisible by 8.

Answer

Let the given statement be P(n), i.e.,

P(n): 3°"*2 - 8n - 9 is divisible by 8.

It can be observed that P(n) is true forn = 1 since 32*1*2 -8 x 1 - 9 = 64, which is
divisible by 8.

Let P(k) be true for some positive integer k, i.e.,

3%+ 2 _ 8k - 9 is divisible by 8.

~3%k*2 _8k -9 =8m; wheremeN .. (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider
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3 _g(k+1)-9
=33 —8k -89

=37 (3" 8k —9+8k+9) -8k -17
337 -8k -9)+3 (8k+9) -8k 17
9.8m +9(8k +9) -8k 17
=9.8m+ 72k +81-8k —17

=90.8m+ 64k + 64
=8(9m +8k +8)

= 8. where r = {fjm +8k +8) is a natural number

Therefore, 3" —8(k +1)-9 is divisible by 8.

Thus, P(k + 1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all n € N: 41" -
14" is a multiple of 27.

Answer

Let the given statement be P(n), i.e,,

P(n):41" - 14"is a multiple of 27.

It can be observed that P(n) is true for n = 1 since 41'-14' =27 , which is a multiple of
27.

Let P(k) be true for some positive integer k, i.e.,

41k - 14%is a multiple of 27

~41% - 14X = 27m, where me N ... (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider
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41-’.+l o l4.'.+|
=41"-41-14"-14

=41{41" - 14" +14" ) 14" 14

=41(41" —14" )+ 41.14" —14" .14

=41.27Tm+14" (41-14)

=41.27m+27.14"

=27(41m—-14")

=27xr, where r = {4 Im—14" ) is a natural number
Therefore, 41" =14"*" is a multiple of 27.

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.

Prove the following by using the principle of mathematical induction for all 7 = N:

(2n +7) < (n + 3)?

Answer

Let the given statement be P(n), i.e.,

P(n): (2n +7) < (n + 3)?

It can be observed that P(n) is true for n = 1 since 2.1 + 7 = 9 < (1 + 3)? = 16, which is
true.

Let P(k) be true for some positive integer k, i.e.,

(2k + 7) < (k + 3)* .. (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider
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{2(k+1)+7} =(2k+7)+2
{2{k+|]+}'}={2k+?}+2«:{k+3]:+2 [using [I}]
2(k+1)+7 <k’ +6k+9+2

2(k+1)+7 <k’ +6k+11

Now, k¥ +6k +11 <k’ +8k +16

2k 1)+ T <(k+4)

2(k+1)+7 <{(k+1)+3}

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

numbers i.e., n.
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