Class – XI Subject – Mathematics [Coordinate Geometry _ Straight Lines in a Plane]

- 1) Find the value of K such that the line joining the points (2, K) and (-1, 3) is parallel to the line joining (0, 1) and (-3, 1).
- 2) Show that points (a, b + c), (b, c + a), (c, a + b) are collinear.
- 3) Show that points $(at_1^2, 2at_1)$, $(at_2^2, 2at_2)$ and (a, 0) are collinear if $t_1t_2 = -1$
- 4) Find the equation of the line that has y intercept 4 and is parallel to the line 2x 3y = 7
- 5) Find the equation of the line that has x intercept 3 and is perpendicular to the line 3x + 5y = 4.
- 6) Prove that the lines 7x 2y + 5 = 0 and 14x 4y 8 = 0 are parallel to each other.
- 7) Prove that the lines 3x 2y + 5 = 0 and 4x + 6y 23 = 0 are perpendicular.
- 8) Find out the angle between the following pair of lines
 - a) $y \sqrt{3}x 5 = 0$ and $\sqrt{3}y x + 6 = 0$
 - b) $y = (2 \sqrt{3})x + 5$ and $y = (2 + \sqrt{3})x 2$
- 9) Find the equation of a line which passes through the point (3, -2) and is inclined at 60° to the line $\sqrt{3x + y} = 1$.
- 10) Find the equation of a line which passes through the point (x_1, y_1) and perpendicular to the line $xy_1 + x_1y = a^2$
- 11) A line such that its segment between the axis is bisected at the point (x_1, y_1) . prove that the equation of the

line is
$$\frac{x}{2x_1} + \frac{y}{2y_2} = 1$$

'a' and 'b'. Show that $\frac{1}{P^2} = \frac{1}{a^2} + \frac{1}{b^2}$.

- 12) If the three lines $a_1x + b_1y = 1$, $a_2x + b_2y = 1$ and $a_3x + b_3y = 1$ are concurrent, prove that the points (a_1,b_1) , (a_2,b_2) and (a_3,b_3) are collinear.
- 13) Find the value of k such that the three lines x + y 3 = 0, kx y 5 = 0 and 3x + y 7 = 0 are concurrent.
- 14) Find the length of the perpendicular drawn from the point (b, a) to the line $\frac{x}{a} + \frac{y}{b} = 1$
- 15) If p and q are the perpendicular from the origin upon the lines whose equations are x sec θ + y cosec θ = a and x cos θ y sin θ = a cos2 θ . Prove that $4p^2 + q^2 = a^2$
- 16) If P be the measure of the perpendicular segment from the origin to the line whose intercept on the axes are