Pictures of the Conic Sections

Ellipses

Picture Courtesy: Susan Whitehouse, TES

Parabola:

Equations	$\mathbf{y}^{2}=4 \mathrm{ax}$ (right)	$\mathbf{y}^{\mathbf{2}}=\mathbf{- 4 a x}$ (left)	$\mathrm{x}^{2}=4 \mathrm{ay}$ (up)	$\mathbf{x}^{2}=-4 \mathrm{ay}$ (down)
Vertex	$\mathrm{V}(0,0)$	$\mathrm{V}(0,0)$	$\mathrm{V}(0,0)$	$\mathrm{V}(0,0)$
Focus	$\mathrm{F}(\mathrm{a}, 0)$	F(-a, 0)	$F(0, a)$	$\mathrm{F}(0,-\mathrm{a})$
Eqn. Of axis	X axis($\mathrm{y}=0$)	$X \operatorname{axis}(\mathrm{y}=0)$	$y \operatorname{axis}(\mathrm{x}=0)$	$y \operatorname{axis}(\mathrm{x}=0)$
Eqn. Of directrix	$x=-\mathrm{a}$	$\mathrm{x}=\mathrm{a}$	$y=-a$	$y=a$
LL	4a	4a	4a	4a

- Point $\left(x_{1}, y_{1}\right)$ lies outside the parabola $y^{2}=4 a x$ if $\left(y_{1}\right)^{2}>4 a x_{1}$
- Point $\left(x_{1}, y_{1}\right)$ lies inside the parabola $y^{2}=4 a x$ if $\left(y_{1}\right)^{2}<4 a x_{1}$
- Point $\left(x_{1}, y_{1}\right)$ lies on the parabola $y^{2}=4 a x$ if $\left(y_{1}\right)^{2}=4 a x_{1}$
- For a parabola eccentricity, e=1
- For any point on a parabola, its distance from the focus = distance from the directrix.

Ellipse:

- The sum of distances of any point on the ellipse from its foci is a constant (= 2a)
- $e<1 \quad ; c^{2}=a^{2}-b^{2} \quad a^{2}>b^{2}$

Equation	$\mathbf{x}^{2} / a^{2}+\mathbf{y}^{2} / \mathrm{b}^{2}=\mathbf{1}$	$\mathbf{x}^{2} / \mathrm{b}^{2}+\mathbf{y}^{2} / \mathbf{a}^{2}=\mathbf{1}$
Centre	$(0,0)$	$(0,0)$
Vertices	$\mathrm{V}(\pm \mathrm{a}, 0)$	$\mathrm{V}(0, \pm \mathrm{a})$
Foci	$\mathrm{F}(\pm \mathrm{c}, 0)$	$\mathrm{F}(0, \pm \mathrm{c})$
Length of major axis	2 a	2 a
Length of minor axis	2 b	2 b
Length of latus rectum	$2 \mathrm{~b}^{2} / \mathrm{a}$	$2 \mathrm{~b}^{2} / \mathrm{a}$
Eccentricity, \mathbf{e}	$\mathrm{c} a$	c / a
Distance between foci	2 c	2 c
Eqn. Of directrix	$x= \pm a^{2} / c$	$y= \pm a^{2} / c$
Eqn. Of latus rectum	$x= \pm c$	$y= \pm c$

Hyperbola:

- The difference of distances of any point on the hyperbola from its foci is a constant (= 2a)
- $e>1 \quad ; c^{2}=a^{2}+b^{2}$

Equation	$\mathbf{x}^{2} / \mathbf{a}^{2}-\mathbf{y}^{\mathbf{2} / \mathbf{b}^{2}=\mathbf{1}}$	$\mathbf{y}^{2} / \mathrm{a}^{2}-\mathbf{x}^{2} / \mathbf{b}^{\mathbf{2}=1}$
Centre	$(0,0)$	$(0,0)$
Vertices	$\mathrm{V}(\pm \mathrm{a}, 0)$	$\mathrm{V}(0, \pm \mathrm{a})$
Foci	$\mathrm{F}(\pm \mathrm{c}, 0)$	$\mathrm{F}(0, \pm \mathrm{c})$
Length of transverse axis	2 a	2 a
Length of conjugate axis	2 b	2 b
Length of latus rectum	$2 \mathrm{~b}^{2} / \mathrm{a}$	$2 \mathrm{~b}^{2} / \mathrm{a}$
Eccentricity, \mathbf{e}	c / a	
Distance between foci	c / a	2 c
Eqn. Of directrix	2 c	$\mathrm{c}= \pm \mathrm{a}^{2} / \mathrm{c}$
Eqn. Of latus rectum	$x= \pm \mathrm{a}^{2} / \mathrm{c}$	$\mathrm{y}= \pm \mathrm{c}$

