THE INDIAN SCHOOL, KINGDOM OF BAHRAIN

Sample Paper

Class XI Mathematics

Section A [6 x 1 = 6 marks]

- 1. Solve $x^2 + x + \frac{1}{\sqrt{2}} = 0$ 2. Evaluate: i⁻³⁹
- 3. Find the multiplicative inverse of 2-2i.
- 4. 8-3x < 2 When x is a natural number.

5. Find the principal solution of sin x =
$$\frac{\sqrt{3}}{2}$$

6. Find the value of $\sin 15^{\circ}$

Section B [13 x 4 = 52 marks]

7. Solve : $\cos 4x = \cos 2x$ OR $\sin 2x + \cos x = 0$
8. Prove that $\frac{\cos x + \cos 3x}{\sin x + \sin 3x} = \cot 2x$
9. Prove that $\cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right) = -\sqrt{2}\cos x$
10. Prove that $\cos 2x \cos \frac{x}{2} - \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$
11. Prove using PMI that $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$ For $n \in N$
12. Prove using PMI that $1.3 + 2.3^2 + 3.3^3 + + n.3^n = \frac{(2n-1)3^{n+1} + 3}{4}$ For $n \in N$
13. Prove using PMI that $1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots+n)} = \frac{2n}{n+1}$
OR
Prove using PMI that $1.3 + 2.3^2 + 3.3^3 + + n.3^n = \frac{(2n-1)3^{n+1} + 3}{4}$
14. Find the square root of $-7 - 24i$
15. If $a - ib = \frac{(x+i)^2}{2x^2+1}$ Prove that $a^2 + b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$
16. Reduce $\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$ to the standard form.
OR

Find the number of non – zero integral solutions of the equation $|1-i|^x = 2^x$

- 17. Find the real numbers x and y if (x iy)(3 + 5i) is the conjugate of -6 24i.
- 18. A manufacturer has 600 litres of a 12% solution of acid. How many litres of a 30% acid solution must be added to it so that acid content in the resulting mixture will be more than 15% but less than 18%?

19. Solve :
$$-5 \le \frac{2-3x}{4} \le 9$$
 OR $\frac{2x-1}{3} \ge \frac{3x-2}{4} - \frac{2-x}{5}$

Section C [7 x 6 = 42 marks]

- 20. Derive the formula for cos(A + B) using the unit circle.
- 21. If $\tan x = \frac{3}{4}$, x is in third quadrant find the values of $\frac{\sin x}{2}$, $\frac{\cos x}{2}$ and $\frac{\tan x}{2}$. **OR** If $\sin x = \frac{3}{5}$ and $\cos y = -\frac{12}{13}$, where x and y both lie in second quadrant, find the value of i) $\sin(x + y)$ ii) $\tan(x - y)$ iii) $\cos 2y$
- 22. Prove that $\cos^2 x + \cos^2 (x + 120^0) + \cos^2 (x 120^0) = 3/2$
- 23. Prove using PMI that $x^{2n} y^{2n}$ is divisible by x + y for $n \in N$

24. If α and β are two different complex numbers such that $|\alpha| = 1$ find the value of $\left|\frac{\alpha - \beta}{1 - \overline{\alpha}\beta}\right|$

25. Find real θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely real.

OR

Express in the polar form: $\frac{i-1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}$

26. Graphically solve the following system of linear inequalities: x + y < 3, $2x + y \ge 4$, $2x - 3y \le 6$