Section A [$6 \times 1=6$ marks]

1. Solve $x^{2}+x+\frac{1}{\sqrt{2}}=0$
2. Evaluate: i^{-39}
3. Find the multiplicative inverse of 2-2i.
4. $8-3 \mathrm{x}<2$ When x is a natural number.
5. Find the principal solution of $\sin x=\frac{\sqrt{3}}{2}$
6. Find the value of $\sin 15^{0}$

Section B [$\mathbf{1 3 \times 4 = 5 2}$ marks]

7. Solve : $\cos 4 \mathrm{x}=\cos 2 \mathrm{x} \quad$ OR $\quad \sin 2 \mathrm{x}+\cos \mathrm{x}=0$
8. Prove that $\frac{\cos x+\cos 3 x}{\sin x+\sin 3 x}=\cot 2 x$
9. Prove that $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \cos x$
10. Prove that $\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
11. Prove using PMI that $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots . .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1} \quad$ For $\mathrm{n} \in N$
12. Prove using PMI that $1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$ For $\mathrm{n} \in N$
13. Prove using PMI that $1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots \ldots \ldots+n)}=\frac{2 n}{n+1}$

OR

Prove using PMI that $1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$
14. Find the square root of $-7-24 i$
15. If $\mathrm{a}-\mathrm{ib}=\frac{(\mathrm{x}+\mathrm{i})^{2}}{2 \mathrm{x}^{2}+1}$ Prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
16. Reduce $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$ to the standard form.

OR

Find the number of non - zero integral solutions of the equation $|1-i|^{x}=2^{x}$
17. Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$.
18. A manufacturer has 600 litres of a 12% solution of acid. How many litres of a 30% acid solution must be added to it so that acid content in the resulting mixture will be more than 15% but less than 18% ?
19. Solve : $-5 \leq \frac{2-3 x}{4} \leq 9 \quad$ OR $\frac{2 x-1}{3} \geq \frac{3 x-2}{4}-\frac{2-x}{5}$

Section C [7 x $6=42$ marks]

20. Derive the formula for $\cos (A+B)$ using the unit circle.
21. If $\tan x=3 / 4, x$ is in third quadrant find the values of $\sin x / 2, \cos x / 2$ and $\tan x / 2$.

OR
If $\sin x=3 / 5$ and $\cos y=-12 / 13$, where x and y both lie in second quadrant, find the value of i) $\sin (x+y)$ ii) $\tan (x-y) \quad$ iii) $\cos 2 y$
22. Prove that $\cos ^{2} \mathrm{x}+\cos ^{2}\left(\mathrm{x}+120^{\circ}\right)+\cos ^{2}\left(\mathrm{x}-120^{\circ}\right)=3 / 2$
23. Prove using PMI that $x^{2 n}-y^{2 n}$ is divisible by $\mathrm{x}+\mathrm{y}$ for $\mathrm{n} \in N$
24. If α and β are two different complex numbers such that $|\alpha|=1$ find the value of $\left|\frac{\alpha-\beta}{1-\bar{\alpha} \beta}\right|$
25. Find real θ such that $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is purely real.

OR

Express in the polar form: $\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
26. Graphically solve the following system of linear inequalities:
$x+y<3, \quad 2 x+y \geq 4, \quad 2 x-3 y \leq 6$

